grimjim's picture
Initial repack
5ce966a
metadata
library_name: transformers
pipeline_tag: text-generation
tags:
  - mergekit
  - merge
base_model:
  - lemon07r/Gemma-2-Ataraxy-v3b-9B
  - zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25
model-index:
  - name: Gemma-2-Ataraxy-v4c-9B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 69.45
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v4c-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 44.13
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v4c-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 17.98
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v4c-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.19
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v4c-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 15.3
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v4c-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 37.72
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v4c-9B
          name: Open LLM Leaderboard

lemon07r/Gemma-2-Ataraxy-v4c-9B, fixed

This is a merge of pre-trained language models created using mergekit.

Excess lm_head.weight tensor weights have been trimmed away from the weights at lemon07r/Gemma-2-Ataraxy-v4c-9B.

Merge Details

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

base_model: zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25
dtype: bfloat16
merge_method: slerp
parameters:
  t: 0.25
slices:
- sources:
  - layer_range: [0, 42]
    model: zelk12/recoilme-gemma-2-Ataraxy-9B-v0.1-t0.25
  - layer_range: [0, 42]
    model: lemon07r/Gemma-2-Ataraxy-v3b-9B

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 32.63
IFEval (0-Shot) 69.45
BBH (3-Shot) 44.13
MATH Lvl 5 (4-Shot) 17.98
GPQA (0-shot) 11.19
MuSR (0-shot) 15.30
MMLU-PRO (5-shot) 37.72