Edit model card

scenario-kd-scr-ner-half_data-univner_full55

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1043
  • Precision: 0.5956
  • Recall: 0.5386
  • F1: 0.5656
  • Accuracy: 0.9591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.8001 0.2910 500 2.4909 0.4352 0.0136 0.0263 0.9245
2.1119 0.5821 1000 2.1519 0.2415 0.1440 0.1804 0.9270
1.9078 0.8731 1500 2.0224 0.2495 0.1339 0.1743 0.9298
1.7762 1.1641 2000 1.9231 0.2552 0.1578 0.1950 0.9318
1.6349 1.4552 2500 1.8712 0.3116 0.2858 0.2982 0.9346
1.5939 1.7462 3000 1.7761 0.3273 0.3079 0.3173 0.9377
1.4775 2.0373 3500 1.7624 0.3492 0.2557 0.2952 0.9385
1.388 2.3283 4000 1.6539 0.3832 0.3331 0.3564 0.9407
1.3144 2.6193 4500 1.6543 0.3350 0.3226 0.3287 0.9379
1.2781 2.9104 5000 1.5514 0.4049 0.3541 0.3778 0.9436
1.1939 3.2014 5500 1.5313 0.4128 0.3630 0.3863 0.9438
1.137 3.4924 6000 1.5061 0.4120 0.3988 0.4053 0.9447
1.1309 3.7835 6500 1.4980 0.4210 0.3520 0.3834 0.9453
1.0593 4.0745 7000 1.4894 0.4453 0.3795 0.4098 0.9470
0.993 4.3655 7500 1.4434 0.4509 0.3988 0.4232 0.9481
0.9673 4.6566 8000 1.4375 0.4632 0.4165 0.4386 0.9489
0.9454 4.9476 8500 1.3964 0.4640 0.4240 0.4431 0.9489
0.8715 5.2386 9000 1.4012 0.4630 0.4288 0.4452 0.9506
0.8343 5.5297 9500 1.3712 0.4531 0.4497 0.4514 0.9498
0.8396 5.8207 10000 1.3719 0.5407 0.4007 0.4603 0.9504
0.8217 6.1118 10500 1.3344 0.5002 0.4810 0.4904 0.9521
0.7583 6.4028 11000 1.3398 0.4861 0.4768 0.4814 0.9513
0.7399 6.6938 11500 1.3444 0.4971 0.4903 0.4937 0.9524
0.7296 6.9849 12000 1.3103 0.4902 0.5073 0.4986 0.9526
0.6707 7.2759 12500 1.3216 0.5082 0.4872 0.4975 0.9536
0.6701 7.5669 13000 1.2793 0.5306 0.4960 0.5127 0.9547
0.6496 7.8580 13500 1.2766 0.5139 0.5031 0.5084 0.9541
0.6243 8.1490 14000 1.2645 0.5363 0.5045 0.5200 0.9555
0.6003 8.4400 14500 1.2612 0.5457 0.4882 0.5154 0.9552
0.5937 8.7311 15000 1.2817 0.5302 0.4822 0.5051 0.9546
0.5766 9.0221 15500 1.2389 0.5441 0.4976 0.5198 0.9556
0.5478 9.3132 16000 1.2498 0.5628 0.4926 0.5254 0.9564
0.5367 9.6042 16500 1.2404 0.5506 0.5233 0.5366 0.9564
0.5329 9.8952 17000 1.2316 0.5385 0.5259 0.5321 0.9556
0.5139 10.1863 17500 1.2420 0.5340 0.5258 0.5298 0.9560
0.4943 10.4773 18000 1.2187 0.5565 0.5259 0.5408 0.9570
0.4918 10.7683 18500 1.2259 0.5625 0.5006 0.5298 0.9564
0.4971 11.0594 19000 1.2147 0.5591 0.5273 0.5428 0.9573
0.4611 11.3504 19500 1.2211 0.5714 0.4996 0.5331 0.9568
0.4613 11.6414 20000 1.2157 0.5513 0.5243 0.5375 0.9565
0.4601 11.9325 20500 1.2139 0.5717 0.5120 0.5402 0.9569
0.4432 12.2235 21000 1.1935 0.5585 0.5445 0.5514 0.9575
0.4319 12.5146 21500 1.1940 0.5683 0.5483 0.5581 0.9580
0.4339 12.8056 22000 1.1763 0.5703 0.5439 0.5568 0.9575
0.4203 13.0966 22500 1.1844 0.5693 0.5334 0.5508 0.9577
0.4071 13.3877 23000 1.2131 0.5818 0.5146 0.5462 0.9573
0.4055 13.6787 23500 1.1782 0.5796 0.5263 0.5517 0.9575
0.4062 13.9697 24000 1.1744 0.5781 0.5312 0.5537 0.9579
0.3878 14.2608 24500 1.1585 0.5748 0.5532 0.5638 0.9579
0.3894 14.5518 25000 1.1790 0.5823 0.5282 0.5539 0.9581
0.3791 14.8428 25500 1.1633 0.5806 0.5304 0.5544 0.9579
0.3776 15.1339 26000 1.1769 0.5894 0.5259 0.5559 0.9584
0.3633 15.4249 26500 1.1719 0.5721 0.5507 0.5612 0.9583
0.364 15.7159 27000 1.1530 0.5744 0.5488 0.5613 0.9583
0.3627 16.0070 27500 1.1526 0.5711 0.5532 0.5620 0.9581
0.3475 16.2980 28000 1.1648 0.5943 0.5230 0.5564 0.9583
0.3464 16.5891 28500 1.1688 0.5796 0.5132 0.5444 0.9580
0.3466 16.8801 29000 1.1459 0.5936 0.5268 0.5582 0.9583
0.3405 17.1711 29500 1.1623 0.5956 0.5299 0.5608 0.9578
0.3305 17.4622 30000 1.1574 0.5856 0.5282 0.5554 0.9577
0.3359 17.7532 30500 1.1441 0.5861 0.5468 0.5658 0.9588
0.3266 18.0442 31000 1.1436 0.5934 0.5410 0.5660 0.9586
0.3211 18.3353 31500 1.1442 0.5754 0.5438 0.5592 0.9583
0.3178 18.6263 32000 1.1365 0.5907 0.5468 0.5679 0.9588
0.3218 18.9173 32500 1.1396 0.5866 0.5448 0.5649 0.9584
0.3147 19.2084 33000 1.1456 0.6075 0.5175 0.5589 0.9579
0.3088 19.4994 33500 1.1359 0.5733 0.5301 0.5509 0.9581
0.3096 19.7905 34000 1.1376 0.6005 0.5317 0.5640 0.9587
0.3071 20.0815 34500 1.1227 0.5936 0.5618 0.5773 0.9591
0.3046 20.3725 35000 1.1187 0.5972 0.5428 0.5687 0.9586
0.2978 20.6636 35500 1.1395 0.5925 0.5442 0.5673 0.9587
0.2999 20.9546 36000 1.1410 0.5992 0.5468 0.5718 0.9591
0.2916 21.2456 36500 1.1224 0.5909 0.5464 0.5678 0.9587
0.2917 21.5367 37000 1.1380 0.6075 0.5305 0.5664 0.9585
0.2923 21.8277 37500 1.1057 0.5955 0.5549 0.5745 0.9593
0.2898 22.1187 38000 1.1172 0.6055 0.5432 0.5727 0.9587
0.2833 22.4098 38500 1.1302 0.6125 0.5249 0.5653 0.9584
0.2827 22.7008 39000 1.1194 0.6053 0.5462 0.5742 0.9590
0.2873 22.9919 39500 1.1203 0.5920 0.5418 0.5658 0.9586
0.2792 23.2829 40000 1.1254 0.6032 0.5389 0.5692 0.9586
0.2771 23.5739 40500 1.1243 0.5987 0.5301 0.5623 0.9586
0.2788 23.8650 41000 1.1294 0.6103 0.5083 0.5546 0.9582
0.2754 24.1560 41500 1.1016 0.5991 0.5498 0.5734 0.9596
0.2742 24.4470 42000 1.1133 0.5986 0.5496 0.5730 0.9591
0.2716 24.7381 42500 1.1239 0.6167 0.5198 0.5642 0.9585
0.2716 25.0291 43000 1.1182 0.5941 0.5416 0.5666 0.9588
0.268 25.3201 43500 1.1049 0.6014 0.5461 0.5724 0.9589
0.2673 25.6112 44000 1.1126 0.6006 0.5298 0.5630 0.9586
0.2667 25.9022 44500 1.1043 0.5956 0.5386 0.5656 0.9591

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
235M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-scr-ner-half_data-univner_full55