scenario-kd-scr-ner-half_data-univner_full55
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1043
- Precision: 0.5956
- Recall: 0.5386
- F1: 0.5656
- Accuracy: 0.9591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.8001 | 0.2910 | 500 | 2.4909 | 0.4352 | 0.0136 | 0.0263 | 0.9245 |
2.1119 | 0.5821 | 1000 | 2.1519 | 0.2415 | 0.1440 | 0.1804 | 0.9270 |
1.9078 | 0.8731 | 1500 | 2.0224 | 0.2495 | 0.1339 | 0.1743 | 0.9298 |
1.7762 | 1.1641 | 2000 | 1.9231 | 0.2552 | 0.1578 | 0.1950 | 0.9318 |
1.6349 | 1.4552 | 2500 | 1.8712 | 0.3116 | 0.2858 | 0.2982 | 0.9346 |
1.5939 | 1.7462 | 3000 | 1.7761 | 0.3273 | 0.3079 | 0.3173 | 0.9377 |
1.4775 | 2.0373 | 3500 | 1.7624 | 0.3492 | 0.2557 | 0.2952 | 0.9385 |
1.388 | 2.3283 | 4000 | 1.6539 | 0.3832 | 0.3331 | 0.3564 | 0.9407 |
1.3144 | 2.6193 | 4500 | 1.6543 | 0.3350 | 0.3226 | 0.3287 | 0.9379 |
1.2781 | 2.9104 | 5000 | 1.5514 | 0.4049 | 0.3541 | 0.3778 | 0.9436 |
1.1939 | 3.2014 | 5500 | 1.5313 | 0.4128 | 0.3630 | 0.3863 | 0.9438 |
1.137 | 3.4924 | 6000 | 1.5061 | 0.4120 | 0.3988 | 0.4053 | 0.9447 |
1.1309 | 3.7835 | 6500 | 1.4980 | 0.4210 | 0.3520 | 0.3834 | 0.9453 |
1.0593 | 4.0745 | 7000 | 1.4894 | 0.4453 | 0.3795 | 0.4098 | 0.9470 |
0.993 | 4.3655 | 7500 | 1.4434 | 0.4509 | 0.3988 | 0.4232 | 0.9481 |
0.9673 | 4.6566 | 8000 | 1.4375 | 0.4632 | 0.4165 | 0.4386 | 0.9489 |
0.9454 | 4.9476 | 8500 | 1.3964 | 0.4640 | 0.4240 | 0.4431 | 0.9489 |
0.8715 | 5.2386 | 9000 | 1.4012 | 0.4630 | 0.4288 | 0.4452 | 0.9506 |
0.8343 | 5.5297 | 9500 | 1.3712 | 0.4531 | 0.4497 | 0.4514 | 0.9498 |
0.8396 | 5.8207 | 10000 | 1.3719 | 0.5407 | 0.4007 | 0.4603 | 0.9504 |
0.8217 | 6.1118 | 10500 | 1.3344 | 0.5002 | 0.4810 | 0.4904 | 0.9521 |
0.7583 | 6.4028 | 11000 | 1.3398 | 0.4861 | 0.4768 | 0.4814 | 0.9513 |
0.7399 | 6.6938 | 11500 | 1.3444 | 0.4971 | 0.4903 | 0.4937 | 0.9524 |
0.7296 | 6.9849 | 12000 | 1.3103 | 0.4902 | 0.5073 | 0.4986 | 0.9526 |
0.6707 | 7.2759 | 12500 | 1.3216 | 0.5082 | 0.4872 | 0.4975 | 0.9536 |
0.6701 | 7.5669 | 13000 | 1.2793 | 0.5306 | 0.4960 | 0.5127 | 0.9547 |
0.6496 | 7.8580 | 13500 | 1.2766 | 0.5139 | 0.5031 | 0.5084 | 0.9541 |
0.6243 | 8.1490 | 14000 | 1.2645 | 0.5363 | 0.5045 | 0.5200 | 0.9555 |
0.6003 | 8.4400 | 14500 | 1.2612 | 0.5457 | 0.4882 | 0.5154 | 0.9552 |
0.5937 | 8.7311 | 15000 | 1.2817 | 0.5302 | 0.4822 | 0.5051 | 0.9546 |
0.5766 | 9.0221 | 15500 | 1.2389 | 0.5441 | 0.4976 | 0.5198 | 0.9556 |
0.5478 | 9.3132 | 16000 | 1.2498 | 0.5628 | 0.4926 | 0.5254 | 0.9564 |
0.5367 | 9.6042 | 16500 | 1.2404 | 0.5506 | 0.5233 | 0.5366 | 0.9564 |
0.5329 | 9.8952 | 17000 | 1.2316 | 0.5385 | 0.5259 | 0.5321 | 0.9556 |
0.5139 | 10.1863 | 17500 | 1.2420 | 0.5340 | 0.5258 | 0.5298 | 0.9560 |
0.4943 | 10.4773 | 18000 | 1.2187 | 0.5565 | 0.5259 | 0.5408 | 0.9570 |
0.4918 | 10.7683 | 18500 | 1.2259 | 0.5625 | 0.5006 | 0.5298 | 0.9564 |
0.4971 | 11.0594 | 19000 | 1.2147 | 0.5591 | 0.5273 | 0.5428 | 0.9573 |
0.4611 | 11.3504 | 19500 | 1.2211 | 0.5714 | 0.4996 | 0.5331 | 0.9568 |
0.4613 | 11.6414 | 20000 | 1.2157 | 0.5513 | 0.5243 | 0.5375 | 0.9565 |
0.4601 | 11.9325 | 20500 | 1.2139 | 0.5717 | 0.5120 | 0.5402 | 0.9569 |
0.4432 | 12.2235 | 21000 | 1.1935 | 0.5585 | 0.5445 | 0.5514 | 0.9575 |
0.4319 | 12.5146 | 21500 | 1.1940 | 0.5683 | 0.5483 | 0.5581 | 0.9580 |
0.4339 | 12.8056 | 22000 | 1.1763 | 0.5703 | 0.5439 | 0.5568 | 0.9575 |
0.4203 | 13.0966 | 22500 | 1.1844 | 0.5693 | 0.5334 | 0.5508 | 0.9577 |
0.4071 | 13.3877 | 23000 | 1.2131 | 0.5818 | 0.5146 | 0.5462 | 0.9573 |
0.4055 | 13.6787 | 23500 | 1.1782 | 0.5796 | 0.5263 | 0.5517 | 0.9575 |
0.4062 | 13.9697 | 24000 | 1.1744 | 0.5781 | 0.5312 | 0.5537 | 0.9579 |
0.3878 | 14.2608 | 24500 | 1.1585 | 0.5748 | 0.5532 | 0.5638 | 0.9579 |
0.3894 | 14.5518 | 25000 | 1.1790 | 0.5823 | 0.5282 | 0.5539 | 0.9581 |
0.3791 | 14.8428 | 25500 | 1.1633 | 0.5806 | 0.5304 | 0.5544 | 0.9579 |
0.3776 | 15.1339 | 26000 | 1.1769 | 0.5894 | 0.5259 | 0.5559 | 0.9584 |
0.3633 | 15.4249 | 26500 | 1.1719 | 0.5721 | 0.5507 | 0.5612 | 0.9583 |
0.364 | 15.7159 | 27000 | 1.1530 | 0.5744 | 0.5488 | 0.5613 | 0.9583 |
0.3627 | 16.0070 | 27500 | 1.1526 | 0.5711 | 0.5532 | 0.5620 | 0.9581 |
0.3475 | 16.2980 | 28000 | 1.1648 | 0.5943 | 0.5230 | 0.5564 | 0.9583 |
0.3464 | 16.5891 | 28500 | 1.1688 | 0.5796 | 0.5132 | 0.5444 | 0.9580 |
0.3466 | 16.8801 | 29000 | 1.1459 | 0.5936 | 0.5268 | 0.5582 | 0.9583 |
0.3405 | 17.1711 | 29500 | 1.1623 | 0.5956 | 0.5299 | 0.5608 | 0.9578 |
0.3305 | 17.4622 | 30000 | 1.1574 | 0.5856 | 0.5282 | 0.5554 | 0.9577 |
0.3359 | 17.7532 | 30500 | 1.1441 | 0.5861 | 0.5468 | 0.5658 | 0.9588 |
0.3266 | 18.0442 | 31000 | 1.1436 | 0.5934 | 0.5410 | 0.5660 | 0.9586 |
0.3211 | 18.3353 | 31500 | 1.1442 | 0.5754 | 0.5438 | 0.5592 | 0.9583 |
0.3178 | 18.6263 | 32000 | 1.1365 | 0.5907 | 0.5468 | 0.5679 | 0.9588 |
0.3218 | 18.9173 | 32500 | 1.1396 | 0.5866 | 0.5448 | 0.5649 | 0.9584 |
0.3147 | 19.2084 | 33000 | 1.1456 | 0.6075 | 0.5175 | 0.5589 | 0.9579 |
0.3088 | 19.4994 | 33500 | 1.1359 | 0.5733 | 0.5301 | 0.5509 | 0.9581 |
0.3096 | 19.7905 | 34000 | 1.1376 | 0.6005 | 0.5317 | 0.5640 | 0.9587 |
0.3071 | 20.0815 | 34500 | 1.1227 | 0.5936 | 0.5618 | 0.5773 | 0.9591 |
0.3046 | 20.3725 | 35000 | 1.1187 | 0.5972 | 0.5428 | 0.5687 | 0.9586 |
0.2978 | 20.6636 | 35500 | 1.1395 | 0.5925 | 0.5442 | 0.5673 | 0.9587 |
0.2999 | 20.9546 | 36000 | 1.1410 | 0.5992 | 0.5468 | 0.5718 | 0.9591 |
0.2916 | 21.2456 | 36500 | 1.1224 | 0.5909 | 0.5464 | 0.5678 | 0.9587 |
0.2917 | 21.5367 | 37000 | 1.1380 | 0.6075 | 0.5305 | 0.5664 | 0.9585 |
0.2923 | 21.8277 | 37500 | 1.1057 | 0.5955 | 0.5549 | 0.5745 | 0.9593 |
0.2898 | 22.1187 | 38000 | 1.1172 | 0.6055 | 0.5432 | 0.5727 | 0.9587 |
0.2833 | 22.4098 | 38500 | 1.1302 | 0.6125 | 0.5249 | 0.5653 | 0.9584 |
0.2827 | 22.7008 | 39000 | 1.1194 | 0.6053 | 0.5462 | 0.5742 | 0.9590 |
0.2873 | 22.9919 | 39500 | 1.1203 | 0.5920 | 0.5418 | 0.5658 | 0.9586 |
0.2792 | 23.2829 | 40000 | 1.1254 | 0.6032 | 0.5389 | 0.5692 | 0.9586 |
0.2771 | 23.5739 | 40500 | 1.1243 | 0.5987 | 0.5301 | 0.5623 | 0.9586 |
0.2788 | 23.8650 | 41000 | 1.1294 | 0.6103 | 0.5083 | 0.5546 | 0.9582 |
0.2754 | 24.1560 | 41500 | 1.1016 | 0.5991 | 0.5498 | 0.5734 | 0.9596 |
0.2742 | 24.4470 | 42000 | 1.1133 | 0.5986 | 0.5496 | 0.5730 | 0.9591 |
0.2716 | 24.7381 | 42500 | 1.1239 | 0.6167 | 0.5198 | 0.5642 | 0.9585 |
0.2716 | 25.0291 | 43000 | 1.1182 | 0.5941 | 0.5416 | 0.5666 | 0.9588 |
0.268 | 25.3201 | 43500 | 1.1049 | 0.6014 | 0.5461 | 0.5724 | 0.9589 |
0.2673 | 25.6112 | 44000 | 1.1126 | 0.6006 | 0.5298 | 0.5630 | 0.9586 |
0.2667 | 25.9022 | 44500 | 1.1043 | 0.5956 | 0.5386 | 0.5656 | 0.9591 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for haryoaw/scenario-kd-scr-ner-half_data-univner_full55
Base model
FacebookAI/xlm-roberta-base