cine / convert_lora.py
hashu786's picture
Upload 2 files
b9fcecb verified
raw
history blame
8.11 kB
import argparse
import os
from collections import defaultdict
from pathlib import Path
import torch
from safetensors.torch import load_file, save_file
def convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict):
converted_state_dict = {k: diffusers_state_dict.pop(k) for k in list(diffusers_state_dict.keys())}
TRANSFORMER_KEYS_RENAME_DICT = {
"img_in": "x_embedder",
"time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1",
"time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2",
"guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1",
"guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2",
"vector_in.in_layer": "time_text_embed.text_embedder.linear_1",
"vector_in.out_layer": "time_text_embed.text_embedder.linear_2",
".double_blocks": ".transformer_blocks",
".single_blocks": ".single_transformer_blocks",
"img_attn_q_norm": "attn.norm_q",
"img_attn_k_norm": "attn.norm_k",
"img_attn_proj": "attn.to_out.0",
"txt_attn_q_norm": "attn.norm_added_q",
"txt_attn_k_norm": "attn.norm_added_k",
"txt_attn_proj": "attn.to_add_out",
"img_mod.linear": "norm1.linear",
"img_norm1": "norm1.norm",
"img_norm2": "norm2",
"txt_mlp": "ff_context",
"img_mlp": "ff",
"txt_mod.linear": "norm1_context.linear",
"txt_norm1": "norm1.norm",
"txt_norm2": "norm2_context",
"modulation.linear": "norm.linear",
"pre_norm": "norm.norm",
"final_layer.norm_final": "norm_out.norm",
"final_layer.linear": "proj_out",
# "linear2": "proj_out",
"fc1": "net.0.proj",
"fc2": "net.2",
"input_embedder": "proj_in",
# txt_in
"individual_token_refiner.blocks": "token_refiner.refiner_blocks",
"final_layer.adaLN_modulation.1": "norm_out.linear",
# "t_embedder.mlp.0": "time_text_embed.timestep_embedder.linear_1",
# "t_embedder.mlp.2": "time_text_embed.timestep_embedder.linear_2",
"c_embedder": "time_text_embed.text_embedder",
"txt_in": "context_embedder",
# "mlp": "ff",
}
TRANSFORMER_KEYS_RENAME_DICT_REVERSE = {v: k for k, v in TRANSFORMER_KEYS_RENAME_DICT.items()}
for key in list(converted_state_dict.keys()):
if "norm_out.linear" in key:
weight = converted_state_dict.pop(key)
scale, shift = weight.chunk(2, dim=0)
new_weight = torch.cat([shift, scale], dim=0)
converted_state_dict[key] = new_weight
if "to_q" in key:
if "single_transformer_blocks" in key:
to_q = converted_state_dict.pop(key)
to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
to_out = converted_state_dict.pop(key.replace("attn.to_q", "proj_mlp"))
rename_attn_key = "linear1"
if "lora_A" in key:
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
else:
qkv_mlp = torch.cat([to_q, to_k, to_v, to_out], dim=0)
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv_mlp
else:
to_q = converted_state_dict.pop(key)
to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
if "token_refiner" in key:
rename_attn_key = "self_attn_qkv"
if "lora_A" in key:
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
else:
qkv = torch.cat([to_q, to_k, to_v], dim=0)
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv
else:
rename_attn_key = "img_attn_qkv"
if "lora_A" in key:
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
else:
qkv = torch.cat([to_q, to_k, to_v], dim=0)
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv
if "add_q_proj" in key:
to_q = converted_state_dict.pop(key)
to_k = converted_state_dict.pop(key.replace("add_q_proj", "add_k_proj"))
to_v = converted_state_dict.pop(key.replace("add_q_proj", "add_v_proj"))
rename_attn_key = "txt_attn_qkv"
if "lora_A" in key:
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = to_q
else:
qkv = torch.cat([to_q, to_k, to_v], dim=0)
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = qkv
for key in list(converted_state_dict.keys()):
new_key = key[:]
if "token_refiner" in key and "attn.to_out.0" in new_key:
new_key = new_key.replace("attn.to_out.0", "self_attn_proj")
if "token_refiner" in key and "ff" in new_key:
new_key = new_key.replace("ff", "mlp")
if "token_refiner" in key and "norm_out.linear" in new_key:
new_key = new_key.replace("norm_out.linear", "adaLN_modulation.1")
if "context_embedder" in key and "time_text_embed.text_embedder.linear_1" in new_key:
new_key = new_key.replace("time_text_embed.text_embedder.linear_1", "c_embedder.linear_1")
if "context_embedder" in key and "time_text_embed.text_embedder.linear_2" in new_key:
new_key = new_key.replace("time_text_embed.text_embedder.linear_2", "c_embedder.linear_2")
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_1" in new_key:
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_1", "t_embedder.mlp.0")
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_2" in new_key:
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_2", "t_embedder.mlp.2")
if "single_transformer_blocks" in key and "proj_out" in new_key:
new_key = new_key.replace("proj_out", "linear2")
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT_REVERSE.items():
new_key = new_key.replace(replace_key, rename_key)
converted_state_dict[new_key] = converted_state_dict.pop(key)
# Remove "transformer." prefix
for key in list(converted_state_dict.keys()):
if key.startswith("transformer."):
converted_state_dict[key[len("transformer."):]] = converted_state_dict.pop(key)
# Add back "diffusion_model." prefix
for key in list(converted_state_dict.keys()):
converted_state_dict[f"diffusion_model.{key}"] = converted_state_dict.pop(key)
return converted_state_dict
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--output_path_or_name", type=str, required=True)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
if args.ckpt_path.endswith(".pt"):
diffusers_state_dict = torch.load(args.ckpt_path, map_location="cpu", weights_only=True)
elif args.ckpt_path.endswith(".safetensors"):
diffusers_state_dict = load_file(args.ckpt_path)
original_format_state_dict = convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict)
output_path_or_name = Path(args.output_path_or_name)
if output_path_or_name.as_posix().endswith(".safetensors"):
os.makedirs(output_path_or_name.parent, exist_ok=True)
save_file(original_format_state_dict, output_path_or_name)
else:
os.makedirs(output_path_or_name, exist_ok=True)
output_path_or_name = output_path_or_name / "pytorch_lora_weights.safetensors"
save_file(original_format_state_dict, output_path_or_name)