|
import argparse |
|
import os |
|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
|
|
|
|
def convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict): |
|
converted_state_dict = {k: diffusers_state_dict.pop(k) for k in list(diffusers_state_dict.keys())} |
|
|
|
TRANSFORMER_KEYS_RENAME_DICT = { |
|
"img_in": "x_embedder", |
|
"time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1", |
|
"time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2", |
|
"guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1", |
|
"guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2", |
|
"vector_in.in_layer": "time_text_embed.text_embedder.linear_1", |
|
"vector_in.out_layer": "time_text_embed.text_embedder.linear_2", |
|
".double_blocks": ".transformer_blocks", |
|
".single_blocks": ".single_transformer_blocks", |
|
"img_attn_q_norm": "attn.norm_q", |
|
"img_attn_k_norm": "attn.norm_k", |
|
"img_attn_proj": "attn.to_out.0", |
|
"txt_attn_q_norm": "attn.norm_added_q", |
|
"txt_attn_k_norm": "attn.norm_added_k", |
|
"txt_attn_proj": "attn.to_add_out", |
|
"img_mod.linear": "norm1.linear", |
|
"img_norm1": "norm1.norm", |
|
"img_norm2": "norm2", |
|
"txt_mlp": "ff_context", |
|
"img_mlp": "ff", |
|
"txt_mod.linear": "norm1_context.linear", |
|
"txt_norm1": "norm1.norm", |
|
"txt_norm2": "norm2_context", |
|
"modulation.linear": "norm.linear", |
|
"pre_norm": "norm.norm", |
|
"final_layer.norm_final": "norm_out.norm", |
|
"final_layer.linear": "proj_out", |
|
|
|
"fc1": "net.0.proj", |
|
"fc2": "net.2", |
|
"input_embedder": "proj_in", |
|
|
|
"individual_token_refiner.blocks": "token_refiner.refiner_blocks", |
|
"final_layer.adaLN_modulation.1": "norm_out.linear", |
|
|
|
|
|
"c_embedder": "time_text_embed.text_embedder", |
|
"txt_in": "context_embedder", |
|
|
|
} |
|
|
|
TRANSFORMER_KEYS_RENAME_DICT_REVERSE = {v: k for k, v in TRANSFORMER_KEYS_RENAME_DICT.items()} |
|
|
|
for key in list(converted_state_dict.keys()): |
|
if "norm_out.linear" in key: |
|
weight = converted_state_dict.pop(key) |
|
scale, shift = weight.chunk(2, dim=0) |
|
new_weight = torch.cat([shift, scale], dim=0) |
|
converted_state_dict[key] = new_weight |
|
|
|
if "to_q" in key: |
|
if "single_transformer_blocks" in key: |
|
to_q = converted_state_dict.pop(key) |
|
to_k = converted_state_dict.pop(key.replace("to_q", "to_k")) |
|
to_v = converted_state_dict.pop(key.replace("to_q", "to_v")) |
|
to_out = converted_state_dict.pop(key.replace("attn.to_q", "proj_mlp")) |
|
rename_attn_key = "linear1" |
|
if "lora_A" in key: |
|
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q |
|
else: |
|
qkv_mlp = torch.cat([to_q, to_k, to_v, to_out], dim=0) |
|
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv_mlp |
|
else: |
|
to_q = converted_state_dict.pop(key) |
|
to_k = converted_state_dict.pop(key.replace("to_q", "to_k")) |
|
to_v = converted_state_dict.pop(key.replace("to_q", "to_v")) |
|
if "token_refiner" in key: |
|
rename_attn_key = "self_attn_qkv" |
|
if "lora_A" in key: |
|
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q |
|
else: |
|
qkv = torch.cat([to_q, to_k, to_v], dim=0) |
|
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv |
|
else: |
|
rename_attn_key = "img_attn_qkv" |
|
if "lora_A" in key: |
|
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q |
|
else: |
|
qkv = torch.cat([to_q, to_k, to_v], dim=0) |
|
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv |
|
|
|
if "add_q_proj" in key: |
|
to_q = converted_state_dict.pop(key) |
|
to_k = converted_state_dict.pop(key.replace("add_q_proj", "add_k_proj")) |
|
to_v = converted_state_dict.pop(key.replace("add_q_proj", "add_v_proj")) |
|
rename_attn_key = "txt_attn_qkv" |
|
if "lora_A" in key: |
|
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = to_q |
|
else: |
|
qkv = torch.cat([to_q, to_k, to_v], dim=0) |
|
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = qkv |
|
|
|
for key in list(converted_state_dict.keys()): |
|
new_key = key[:] |
|
if "token_refiner" in key and "attn.to_out.0" in new_key: |
|
new_key = new_key.replace("attn.to_out.0", "self_attn_proj") |
|
if "token_refiner" in key and "ff" in new_key: |
|
new_key = new_key.replace("ff", "mlp") |
|
if "token_refiner" in key and "norm_out.linear" in new_key: |
|
new_key = new_key.replace("norm_out.linear", "adaLN_modulation.1") |
|
if "context_embedder" in key and "time_text_embed.text_embedder.linear_1" in new_key: |
|
new_key = new_key.replace("time_text_embed.text_embedder.linear_1", "c_embedder.linear_1") |
|
if "context_embedder" in key and "time_text_embed.text_embedder.linear_2" in new_key: |
|
new_key = new_key.replace("time_text_embed.text_embedder.linear_2", "c_embedder.linear_2") |
|
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_1" in new_key: |
|
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_1", "t_embedder.mlp.0") |
|
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_2" in new_key: |
|
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_2", "t_embedder.mlp.2") |
|
if "single_transformer_blocks" in key and "proj_out" in new_key: |
|
new_key = new_key.replace("proj_out", "linear2") |
|
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT_REVERSE.items(): |
|
new_key = new_key.replace(replace_key, rename_key) |
|
converted_state_dict[new_key] = converted_state_dict.pop(key) |
|
|
|
|
|
for key in list(converted_state_dict.keys()): |
|
if key.startswith("transformer."): |
|
converted_state_dict[key[len("transformer."):]] = converted_state_dict.pop(key) |
|
|
|
|
|
for key in list(converted_state_dict.keys()): |
|
converted_state_dict[f"diffusion_model.{key}"] = converted_state_dict.pop(key) |
|
|
|
return converted_state_dict |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--ckpt_path", type=str, required=True) |
|
parser.add_argument("--output_path_or_name", type=str, required=True) |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args() |
|
|
|
if args.ckpt_path.endswith(".pt"): |
|
diffusers_state_dict = torch.load(args.ckpt_path, map_location="cpu", weights_only=True) |
|
elif args.ckpt_path.endswith(".safetensors"): |
|
diffusers_state_dict = load_file(args.ckpt_path) |
|
|
|
original_format_state_dict = convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict) |
|
|
|
output_path_or_name = Path(args.output_path_or_name) |
|
if output_path_or_name.as_posix().endswith(".safetensors"): |
|
os.makedirs(output_path_or_name.parent, exist_ok=True) |
|
save_file(original_format_state_dict, output_path_or_name) |
|
else: |
|
os.makedirs(output_path_or_name, exist_ok=True) |
|
output_path_or_name = output_path_or_name / "pytorch_lora_weights.safetensors" |
|
save_file(original_format_state_dict, output_path_or_name) |
|
|