|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
# Chinese-Alpaca-2-7B |
|
|
|
**This is the full Chinese-Alpaca-2-7B model,which can be loaded directly for inference and full-parameter training.** |
|
|
|
**Related models👇** |
|
* Long context base models |
|
* [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) |
|
* [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) |
|
* [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) |
|
* [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) |
|
* Base models |
|
* [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) |
|
* [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) |
|
* [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) |
|
* [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) |
|
* Instruction/Chat models |
|
* [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) |
|
* [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) |
|
* [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) |
|
* [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) |
|
|
|
|
|
# Description of Chinese-LLaMA-Alpaca-2 |
|
This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. |
|
|
|
The main contents of this project include: |
|
|
|
* 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. |
|
* 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data |
|
* 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC |
|
* 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. |
|
|
|
Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details. |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ziqingyang__chinese-alpaca-2-7b) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 47.11 | |
|
| ARC (25-shot) | 49.57 | |
|
| HellaSwag (10-shot) | 72.62 | |
|
| MMLU (5-shot) | 46.5 | |
|
| TruthfulQA (0-shot) | 48.63 | |
|
| Winogrande (5-shot) | 70.01 | |
|
| GSM8K (5-shot) | 5.76 | |
|
| DROP (3-shot) | 36.66 | |
|
|