metadata
base_model: facebook/roberta-hate-speech-dynabench-r4-target
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: facebook-hate-speech-fine-tuned
results: []
facebook-hate-speech-fine-tuned
This model is a fine-tuned version of facebook/roberta-hate-speech-dynabench-r4-target on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1943
- Accuracy: 0.9636
- Precision Macro: 0.8675
- Recall Macro: 0.8731
- F1 Macro: 0.8703
- Precision Micro: 0.9636
- Recall Micro: 0.9636
- F1 Micro: 0.9636
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro |
---|---|---|---|---|---|---|---|---|---|---|
0.2628 | 1.0 | 199 | 0.1203 | 0.9585 | 0.8840 | 0.7939 | 0.8318 | 0.9585 | 0.9585 | 0.9585 |
0.071 | 2.0 | 398 | 0.1640 | 0.9673 | 0.9144 | 0.8369 | 0.8709 | 0.9673 | 0.9673 | 0.9673 |
0.1483 | 3.0 | 597 | 0.1943 | 0.9636 | 0.8675 | 0.8731 | 0.8703 | 0.9636 | 0.9636 | 0.9636 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1