|
--- |
|
base_model: facebook/roberta-hate-speech-dynabench-r4-target |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: facebook-hate-speech-fine-tuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# facebook-hate-speech-fine-tuned |
|
|
|
This model is a fine-tuned version of [facebook/roberta-hate-speech-dynabench-r4-target](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1943 |
|
- Accuracy: 0.9636 |
|
- Precision Macro: 0.8675 |
|
- Recall Macro: 0.8731 |
|
- F1 Macro: 0.8703 |
|
- Precision Micro: 0.9636 |
|
- Recall Micro: 0.9636 |
|
- F1 Micro: 0.9636 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:| |
|
| 0.2628 | 1.0 | 199 | 0.1203 | 0.9585 | 0.8840 | 0.7939 | 0.8318 | 0.9585 | 0.9585 | 0.9585 | |
|
| 0.071 | 2.0 | 398 | 0.1640 | 0.9673 | 0.9144 | 0.8369 | 0.8709 | 0.9673 | 0.9673 | 0.9673 | |
|
| 0.1483 | 3.0 | 597 | 0.1943 | 0.9636 | 0.8675 | 0.8731 | 0.8703 | 0.9636 | 0.9636 | 0.9636 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|