metadata
language:
- zh
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- formospeech/tat_asr_aligned
metrics:
- wer
model-index:
- name: Whisper Tiny Taiwanese Condenser
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: TAT ASR Aligned
type: formospeech/tat_asr_aligned
args: 'config: taiwanese, split: test'
metrics:
- name: Wer
type: wer
value: 50.65108143376739
Whisper Tiny Taiwanese Condenser
This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:
- Loss: 1.0814
- Wer: 50.6511
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1362
- training_steps: 13620
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4229 | 0.9985 | 681 | 0.6344 | 65.8772 |
0.4529 | 1.9971 | 1362 | 0.7311 | 71.3135 |
0.3271 | 2.9956 | 2043 | 0.6324 | 64.7777 |
0.2257 | 3.9941 | 2724 | 0.5510 | 58.4141 |
0.1554 | 4.9927 | 3405 | 0.5350 | 57.6394 |
0.122 | 5.9912 | 4086 | 0.5911 | 56.8148 |
0.0935 | 6.9897 | 4767 | 0.6122 | 56.1179 |
0.0718 | 7.9883 | 5448 | 0.6492 | 54.7158 |
0.0588 | 8.9868 | 6129 | 0.6623 | 55.5599 |
0.0466 | 9.9853 | 6810 | 0.6883 | 56.9481 |
0.0349 | 10.9839 | 7491 | 0.7069 | 54.6770 |
0.0298 | 11.9824 | 8172 | 0.7441 | 54.2272 |
0.0215 | 12.9809 | 8853 | 0.7937 | 54.9491 |
0.0141 | 13.9795 | 9534 | 0.8062 | 52.9278 |
0.01 | 14.9780 | 10215 | 0.8717 | 53.2804 |
0.0067 | 15.9765 | 10896 | 0.9279 | 52.6029 |
0.0031 | 16.9751 | 11577 | 0.9783 | 52.0393 |
0.0012 | 17.9736 | 12258 | 1.0311 | 50.6622 |
0.0004 | 18.9721 | 12939 | 1.0574 | 50.7566 |
0.0001 | 19.9707 | 13620 | 1.0814 | 50.6511 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1