metadata
language: fi
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Finnish by Jonatas Grosman
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice fi
type: common_voice
args: fi
metrics:
- name: Test WER
type: wer
value: 62.39
Wav2Vec2-Large-XLSR-53-Finnish
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "fi"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
test_dataset = load_dataset("common_voice", LANG_ID, split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the Finnish test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import homoglyphs as hg
LANG_ID = "fi"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "·", "჻", "¿", "¡", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》"]
CURRENCY_SYMBOLS = ["{{%htmlContent%}}quot;, "£", "€", "¥", "₩", "₹", "₽", "₱", "₦", "₼", "ლ", "₭", "₴", "₲", "₫", "₡", "₵", "₿", "฿", "¢"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer")
unk_regex = None
if LANG_ID in hg.Languages.get_all():
# creating regex to match language specific non valid characters
alphabet = list(hg.Languages.get_alphabet([LANG_ID]))
valid_chars = alphabet + CURRENCY_SYMBOLS
unk_regex = "[^"+re.escape("".join(valid_chars))+"\\s\\d]"
chars_to_ignore_regex = f'[{re.escape("".join(CHARS_TO_IGNORE))}]'
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
if unk_regex is not None:
batch["sentence"] = re.sub(unk_regex, "[UNK]", batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
\twith torch.no_grad():
\t\tlogits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
\tpred_ids = torch.argmax(logits, dim=-1)
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\treturn batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 62.39%