bert_uncased_QAT / README.md
jysh1023's picture
End of training
86a3135
---
license: apache-2.0
base_model: google/bert_uncased_L-6_H-768_A-12
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_uncased_qat
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9094036697247706
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_uncased_qat
This model is a fine-tuned version of [google/bert_uncased_L-6_H-768_A-12](https://huggingface.co/google/bert_uncased_L-6_H-768_A-12) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2984
- Accuracy: 0.9094
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2453 | 1.0 | 527 | 0.2552 | 0.8979 |
| 0.1257 | 2.0 | 1054 | 0.2997 | 0.8933 |
| 0.0818 | 3.0 | 1581 | 0.2984 | 0.9094 |
| 0.057 | 4.0 | 2108 | 0.3181 | 0.9048 |
| 0.0403 | 5.0 | 2635 | 0.3299 | 0.9083 |
| 0.0274 | 6.0 | 3162 | 0.4222 | 0.9060 |
| 0.0192 | 7.0 | 3689 | 0.4797 | 0.9083 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0