xlmr-finetuned / README.md
kietnt0603's picture
End of training
e5e65de
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: xlmr-finetuned
    results: []

xlmr-finetuned

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3897

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.1718 0.29 500 2.5733
2.8822 0.59 1000 2.3739
2.7361 0.88 1500 2.3563
2.6077 1.18 2000 2.2466
2.4731 1.47 2500 2.2027
2.4545 1.76 3000 2.2104
2.467 2.06 3500 2.0885
2.3209 2.35 4000 2.0476
2.2937 2.64 4500 1.9431
2.2624 2.94 5000 1.9157
2.1502 3.23 5500 1.8811
2.1445 3.53 6000 1.8488
2.1308 3.82 6500 1.8074
2.0752 4.11 7000 1.8089
2.032 4.41 7500 1.7853
2.0253 4.7 8000 1.7723
1.9904 4.99 8500 1.6976
1.9348 5.29 9000 1.6399
1.9116 5.58 9500 1.6159
1.9105 5.88 10000 1.5930
1.8649 6.17 10500 1.5590
1.8108 6.46 11000 1.5662
1.8084 6.76 11500 1.5504
1.7835 7.05 12000 1.5933
1.7324 7.34 12500 1.5500
1.7358 7.64 13000 1.4570
1.726 7.93 13500 1.4775
1.6477 8.23 14000 1.4382
1.6768 8.52 14500 1.4717
1.6073 8.81 15000 1.4162
1.6516 9.11 15500 1.4516
1.6084 9.4 16000 1.4209
1.6013 9.69 16500 1.3874
1.608 9.99 17000 1.3897

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.16.1
  • Tokenizers 0.15.0