slovakbert-sts-stsb / README.md
matus's picture
Update README.md
55da8a5
|
raw
history blame
2.14 kB
---
language:
- sk
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
license: cc
datasets:
- glue
metrics:
- spearmanr
widget:
source_sentence: "Izrael uskutočnil letecké údery v blízkosti Damasku."
sentences:
- "Izrael uskutočnil vzdušný útok na Sýriu."
- "Pes leží na gauči a má hlavu na bielom vankúši."
---
# Sentence similarity model based on SlovakBERT
This is a sentence similarity model based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model was fine-tuned using [STSbenchmark](ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark) [Cer et al 2017] translated to Slovak using [M2M100](https://huggingface.co/facebook/m2m100_1.2B). The model can be used as an universal sentence encoder for Slovak sentences.
## Results
The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.3]. It achieves \\(0.791\\) Spearman correlation on STSbenchmark test set.
## Usage
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('kinit/slovakbert-sts-stsb')
embeddings = model.encode(sentences)
print(embeddings)
```
## Cite
```
@article{DBLP:journals/corr/abs-2109-15254,
author = {Mat{\'{u}}s Pikuliak and
Stefan Grivalsky and
Martin Konopka and
Miroslav Blst{\'{a}}k and
Martin Tamajka and
Viktor Bachrat{\'{y}} and
Mari{\'{a}}n Simko and
Pavol Bal{\'{a}}zik and
Michal Trnka and
Filip Uhl{\'{a}}rik},
title = {SlovakBERT: Slovak Masked Language Model},
journal = {CoRR},
volume = {abs/2109.15254},
year = {2021},
url = {https://arxiv.org/abs/2109.15254},
eprinttype = {arXiv},
eprint = {2109.15254},
}
```