|
--- |
|
|
|
language: |
|
- en |
|
- el |
|
|
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
|
|
|
|
widget: |
|
- source_sentence: "Το κινητό έπεσε και έσπασε." |
|
sentences: [ |
|
"H πτώση κατέστρεψε τη συσκευή.", |
|
"Το αυτοκίνητο έσπασε στα δυο.", |
|
"Ο υπουργός έπεσε και έσπασε το πόδι του." |
|
] |
|
|
|
pipeline_tag: sentence-similarity |
|
|
|
license: apache-2.0 |
|
--- |
|
|
|
# Semantic Textual Similarity for the Greek language using Transformers and Transfer Learning |
|
### By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC) |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
We follow a Teacher-Student transfer learning approach described [here](https://www.sbert.net/examples/training/multilingual/README.html) to train an XLM-Roberta-base model on STS using parallel EN-EL sentence pairs. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
model = SentenceTransformer('{MODEL_NAME}') |
|
|
|
sentences1 = ['Το κινητό έπεσε και έσπασε.', |
|
'Το κινητό έπεσε και έσπασε.', |
|
'Το κινητό έπεσε και έσπασε.'] |
|
|
|
sentences2 = ["H πτώση κατέστρεψε τη συσκευή.", |
|
"Το αυτοκίνητο έσπασε στα δυο.", |
|
"Ο υπουργός έπεσε και έσπασε το πόδι του."] |
|
|
|
|
|
embeddings1 = model.encode(sentences1, convert_to_tensor=True) |
|
embeddings2 = model.encode(sentences2, convert_to_tensor=True) |
|
|
|
#Compute cosine-similarities (clone repo for util functions) |
|
from sentence_transformers import util |
|
cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2) |
|
|
|
#Output the pairs with their score |
|
for i in range(len(sentences1)): |
|
print("{} {} Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i])) |
|
|
|
#Outputs: |
|
#Το κινητό έπεσε και έσπασε. H πτώση κατέστρεψε τη συσκευή. Score: 0.6741 |
|
#Το κινητό έπεσε και έσπασε. Το αυτοκίνητο έσπασε στα δυο. Score: 0.5067 |
|
#Το κινητό έπεσε και έσπασε. Ο υπουργός έπεσε και έσπασε το πόδι του. Score: 0.4548 |
|
|
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') |
|
model = AutoModel.from_pretrained( |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, max pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
#### Similarity Evaluation on STS.en-el.txt (translated manually for evaluation purposes) |
|
We measure the semantic textual similarity (STS) between sentence pairs in different languages: |
|
|
|
| cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman | |
|
| ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | |
|
0.834474802920369 | 0.845687403828107 | 0.815895882192263 | 0.81084300966291 | 0.816333562677654 | 0.813879742416394 | 0.7945167996031 | 0.802604238383742 | |
|
|
|
#### Translation |
|
We measure the translation accuracy. Given a list with source sentences, for example, 1000 English sentences. And a list with matching target (translated) sentences, for example, 1000 Greek sentences. For each sentence pair, we check if their embeddings are the closest using cosine similarity. I.e., for each src_sentences[i] we check if trg_sentences[i] has the highest similarity out of all target sentences. If this is the case, we have a hit, otherwise an error. This evaluator reports accuracy (higher = better). |
|
|
|
| src2trg | trg2src | |
|
| ----------- | ----------- | |
|
| 0.981 | 0.9775 | |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 135121 with parameters: |
|
``` |
|
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MSELoss.MSELoss` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"callback": null, |
|
"epochs": 4, |
|
"evaluation_steps": 1000, |
|
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"correct_bias": false, |
|
"eps": 1e-06, |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 10000, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 400, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Acknowledgement |
|
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call) |
|
|
|
|
|
|
|
## Citing & Authors |
|
Citation info for Greek model: TBD |
|
|
|
Based on the transfer learning approach of [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813) |
|
|