|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-base |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- xlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-base-xlsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xlsum |
|
type: xlsum |
|
config: ukrainian |
|
split: train |
|
args: ukrainian |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 2.98 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-base-xlsum |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0396 |
|
- Rouge1: 2.98 |
|
- Rouge2: 0.1333 |
|
- Rougel: 3.0267 |
|
- Rougelsum: 2.9933 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 5.3745 | 1.0 | 500 | 2.5041 | 1.0696 | 0.13 | 1.062 | 1.0629 | |
|
| 3.413 | 2.0 | 1000 | 2.2178 | 1.8333 | 0.1333 | 1.84 | 1.8633 | |
|
| 3.1052 | 3.0 | 1500 | 2.0844 | 3.14 | 0.2667 | 3.18 | 3.1733 | |
|
| 2.9673 | 4.0 | 2000 | 2.0396 | 2.98 | 0.1333 | 3.0267 | 2.9933 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|