lucas-meyer's picture
Update README.md
5e2a607
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: xls-r-fleurs_nl-run2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.38678223185265437

xls-r-fleurs_nl-run2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the FLEURS (nl) dataset. It achieves the following results:

  • Wer (Validation): 38.05%
  • Wer (Test): 37.20%

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.4175 0.55 100 3.8140 1.0
3.2001 1.1 200 2.9283 1.0
2.9162 1.64 300 2.8922 1.0
2.8398 2.19 400 2.3875 0.9756
1.2121 2.74 500 0.8873 0.7050
0.5833 3.29 600 0.6149 0.5276
0.4103 3.84 700 0.5275 0.4575
0.2901 4.38 800 0.5056 0.4510
0.2584 4.93 900 0.5021 0.4363
0.1929 5.48 1000 0.4881 0.4087
0.1747 6.03 1100 0.4961 0.4209
0.1469 6.58 1200 0.4893 0.3868

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3