|
--- |
|
license: apache-2.0 |
|
base_model: distilbert/distilgpt2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: distilgpt2-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilgpt2-finetuned |
|
|
|
This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.8114 |
|
- Bleu: 0.0101 |
|
- Bertscore Precision: 0.1499 |
|
- Bertscore Recall: 0.1656 |
|
- Bertscore F1: 0.1571 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Bertscore Precision | Bertscore Recall | Bertscore F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------------------:|:----------------:|:------------:| |
|
| 4.1924 | 1.0 | 644 | 4.0681 | 0.0091 | 0.1493 | 0.1649 | 0.1564 | |
|
| 4.0754 | 2.0 | 1288 | 3.8779 | 0.0099 | 0.1498 | 0.1654 | 0.1569 | |
|
| 3.8277 | 3.0 | 1932 | 3.8114 | 0.0101 | 0.1499 | 0.1656 | 0.1571 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|