thymiantheherb's picture
Upload tokenizer
56328ef verified
|
raw
history blame
2.6 kB
metadata
license: mit
tags:
  - generated_from_trainer
base_model: openai-community/gpt2
model-index:
  - name: gpt2-finetuned-mcqa-sciq
    results: []

gpt2-finetuned-mcqa-sciq

This model is a fine-tuned version of openai-community/gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3533
  • Bertscore Precision: 0.1082
  • Bertscore Recall: 0.1141
  • Bertscore F1: 0.1111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bertscore Precision Bertscore Recall Bertscore F1
4.4695 0.9999 5839 2.3612 0.1082 0.1140 0.1110
4.0507 2.0 11679 2.3533 0.1082 0.1141 0.1111
3.8779 2.9999 17518 2.3820 0.1080 0.1140 0.1110
3.2852 4.0 23358 2.4208 0.1080 0.1140 0.1109
3.6416 4.9999 29197 2.4768 0.1079 0.1139 0.1108
2.9843 6.0 35037 2.5445 0.1079 0.1139 0.1108
2.8509 6.9999 40876 2.6094 0.1079 0.1139 0.1108
2.6932 8.0 46716 2.6658 0.1078 0.1138 0.1107
2.5309 8.9999 52555 2.7283 0.1078 0.1138 0.1107
2.5619 9.9991 58390 2.7585 0.1078 0.1138 0.1107

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1