|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
base_model: openai-community/gpt2 |
|
model-index: |
|
- name: gpt2-finetuned-mcqa-sciq |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt2-finetuned-mcqa-sciq |
|
|
|
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3533 |
|
- Bertscore Precision: 0.1082 |
|
- Bertscore Recall: 0.1141 |
|
- Bertscore F1: 0.1111 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bertscore Precision | Bertscore Recall | Bertscore F1 | |
|
|:-------------:|:------:|:-----:|:---------------:|:-------------------:|:----------------:|:------------:| |
|
| 4.4695 | 0.9999 | 5839 | 2.3612 | 0.1082 | 0.1140 | 0.1110 | |
|
| 4.0507 | 2.0 | 11679 | 2.3533 | 0.1082 | 0.1141 | 0.1111 | |
|
| 3.8779 | 2.9999 | 17518 | 2.3820 | 0.1080 | 0.1140 | 0.1110 | |
|
| 3.2852 | 4.0 | 23358 | 2.4208 | 0.1080 | 0.1140 | 0.1109 | |
|
| 3.6416 | 4.9999 | 29197 | 2.4768 | 0.1079 | 0.1139 | 0.1108 | |
|
| 2.9843 | 6.0 | 35037 | 2.5445 | 0.1079 | 0.1139 | 0.1108 | |
|
| 2.8509 | 6.9999 | 40876 | 2.6094 | 0.1079 | 0.1139 | 0.1108 | |
|
| 2.6932 | 8.0 | 46716 | 2.6658 | 0.1078 | 0.1138 | 0.1107 | |
|
| 2.5309 | 8.9999 | 52555 | 2.7283 | 0.1078 | 0.1138 | 0.1107 | |
|
| 2.5619 | 9.9991 | 58390 | 2.7585 | 0.1078 | 0.1138 | 0.1107 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|