|
--- |
|
library_name: peft |
|
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
model-index: |
|
- name: 345fef6a-8237-4ee7-82b7-ba614660cdd1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
adapter: lora |
|
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM |
|
bf16: true |
|
chat_template: llama3 |
|
dataset_prepared_path: null |
|
datasets: |
|
- data_files: |
|
- 570f06fa330a02a8_train_data.json |
|
ds_type: json |
|
format: custom |
|
path: /workspace/input_data/570f06fa330a02a8_train_data.json |
|
type: |
|
field_input: starter_code |
|
field_instruction: question_content |
|
field_output: test |
|
format: '{instruction} {input}' |
|
no_input_format: '{instruction}' |
|
system_format: '{system}' |
|
system_prompt: '' |
|
debug: null |
|
deepspeed: null |
|
early_stopping_patience: null |
|
eval_max_new_tokens: 256 |
|
eval_table_size: null |
|
evals_per_epoch: 4 |
|
flash_attention: false |
|
fp16: null |
|
fsdp: null |
|
fsdp_config: null |
|
gradient_accumulation_steps: 32 |
|
gradient_checkpointing: true |
|
group_by_length: false |
|
hub_model_id: mamung/345fef6a-8237-4ee7-82b7-ba614660cdd1 |
|
hub_repo: null |
|
hub_strategy: checkpoint |
|
hub_token: null |
|
learning_rate: 0.0002 |
|
load_in_4bit: false |
|
load_in_8bit: false |
|
local_rank: null |
|
logging_steps: 3 |
|
lora_alpha: 64 |
|
lora_dropout: 0.05 |
|
lora_fan_in_fan_out: null |
|
lora_model_dir: null |
|
lora_r: 32 |
|
lora_target_linear: true |
|
lora_target_modules: |
|
- q_proj |
|
- k_proj |
|
- v_proj |
|
- o_proj |
|
lr_scheduler: cosine |
|
max_grad_norm: 2 |
|
max_steps: 100 |
|
micro_batch_size: 2 |
|
mlflow_experiment_name: /tmp/570f06fa330a02a8_train_data.json |
|
model_type: AutoModelForCausalLM |
|
num_epochs: 3 |
|
optim_args: |
|
adam_beta1: 0.9 |
|
adam_beta2: 0.95 |
|
adam_epsilon: 1.0e-05 |
|
optimizer: adamw_torch |
|
output_dir: miner_id_24 |
|
pad_to_sequence_len: true |
|
resume_from_checkpoint: null |
|
s2_attention: null |
|
sample_packing: false |
|
saves_per_epoch: 4 |
|
sequence_len: 2048 |
|
strict: false |
|
tf32: false |
|
tokenizer_type: AutoTokenizer |
|
train_on_inputs: false |
|
trust_remote_code: true |
|
val_set_size: 0.05 |
|
wandb_entity: eddysang |
|
wandb_mode: online |
|
wandb_name: 835a7d05-70b3-4946-9a54-04ee779c4f19 |
|
wandb_project: Gradients-On-Demand |
|
wandb_run: your_name |
|
wandb_runid: 835a7d05-70b3-4946-9a54-04ee779c4f19 |
|
warmup_steps: 20 |
|
weight_decay: 0.02 |
|
xformers_attention: false |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# 345fef6a-8237-4ee7-82b7-ba614660cdd1 |
|
|
|
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 10.2883 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 20 |
|
- training_steps: 86 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| No log | 0.0350 | 1 | 10.3792 | |
|
| 10.3758 | 0.2801 | 8 | 10.3774 | |
|
| 10.3712 | 0.5602 | 16 | 10.3714 | |
|
| 10.3635 | 0.8403 | 24 | 10.3584 | |
|
| 13.5544 | 1.1368 | 32 | 10.3373 | |
|
| 10.2418 | 1.4168 | 40 | 10.3136 | |
|
| 10.2948 | 1.6969 | 48 | 10.2994 | |
|
| 10.258 | 1.9770 | 56 | 10.2935 | |
|
| 10.1202 | 2.2735 | 64 | 10.2904 | |
|
| 10.3454 | 2.5536 | 72 | 10.2889 | |
|
| 10.0236 | 2.8337 | 80 | 10.2883 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.46.0 |
|
- Pytorch 2.5.0+cu124 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |