metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan3
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
distilhubert-finetuned-gtzan3
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.0442
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9942 | 1.0 | 225 | 1.8990 | 0.51 |
1.2485 | 2.0 | 450 | 1.2682 | 0.62 |
0.9196 | 3.0 | 675 | 1.0459 | 0.69 |
0.9034 | 4.0 | 900 | 0.8488 | 0.75 |
0.3035 | 5.0 | 1125 | 0.7319 | 0.76 |
0.0715 | 6.0 | 1350 | 0.8713 | 0.77 |
0.1338 | 7.0 | 1575 | 0.8239 | 0.82 |
0.0254 | 8.0 | 1800 | 0.9324 | 0.83 |
0.0044 | 9.0 | 2025 | 0.7641 | 0.85 |
0.0024 | 10.0 | 2250 | 0.9133 | 0.83 |
0.19 | 11.0 | 2475 | 0.9976 | 0.84 |
0.0013 | 12.0 | 2700 | 0.9684 | 0.83 |
0.0011 | 13.0 | 2925 | 0.9241 | 0.85 |
0.001 | 14.0 | 3150 | 0.9540 | 0.86 |
0.0008 | 15.0 | 3375 | 1.0849 | 0.85 |
0.0007 | 16.0 | 3600 | 0.9005 | 0.85 |
0.0007 | 17.0 | 3825 | 0.9798 | 0.84 |
0.0007 | 18.0 | 4050 | 1.0058 | 0.84 |
0.0005 | 19.0 | 4275 | 1.0524 | 0.85 |
0.0006 | 20.0 | 4500 | 1.0442 | 0.85 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3