|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: fine_tuned_t5_small_model_sec_5_v13 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_t5_small_model_sec_5_v13 |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9971 |
|
- Rouge1: 0.4057 |
|
- Rouge2: 0.155 |
|
- Rougel: 0.2516 |
|
- Rougelsum: 0.252 |
|
- Gen Len: 95.1 |
|
- Bert F1: 0.8758 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bert F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:-------:| |
|
| 3.5508 | 1.0 | 95 | 3.1502 | 0.4016 | 0.1522 | 0.2479 | 0.2476 | 97.6526 | 0.874 | |
|
| 3.1904 | 2.0 | 190 | 3.0374 | 0.4094 | 0.1578 | 0.2536 | 0.2536 | 97.6474 | 0.8757 | |
|
| 3.138 | 3.0 | 285 | 3.0059 | 0.4034 | 0.1538 | 0.2486 | 0.2491 | 95.0211 | 0.8752 | |
|
| 3.1061 | 4.0 | 380 | 2.9971 | 0.4057 | 0.155 | 0.2516 | 0.252 | 95.1 | 0.8758 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|