|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: alvaroalon2/biobert_chemical_ner |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: murat_chem_model_extra_data |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# murat_chem_model_extra_data |
|
|
|
This model is a fine-tuned version of [alvaroalon2/biobert_chemical_ner](https://huggingface.co/alvaroalon2/biobert_chemical_ner) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0089 |
|
- Chemical: {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} |
|
- Micro avg: {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} |
|
- Macro avg: {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} |
|
- Weighted avg: {'precision': 0.9656699889258028, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539658, 'support': 900} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Chemical | Micro avg | Macro avg | Weighted avg | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:| |
|
| 0.0266 | 1.0 | 16198 | 0.0113 | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} | |
|
| 0.0092 | 2.0 | 32396 | 0.0077 | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} | |
|
| 0.0051 | 3.0 | 48594 | 0.0089 | {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} | {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} | {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} | {'precision': 0.9656699889258028, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539658, 'support': 900} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|