musralina's picture
update model card README.md
18ac71c
|
raw
history blame
2.8 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: helsinki-opus-de-en-fine-tuned-wmt16-finetuned-src-to-trg
    results: []

helsinki-opus-de-en-fine-tuned-wmt16-finetuned-src-to-trg

This model is a fine-tuned version of mariav/helsinki-opus-de-en-fine-tuned-wmt16 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9684
  • Rouge1: 63.4933
  • Rouge2: 31.4582
  • Rougel: 60.1644
  • Rougelsum: 60.1675
  • Gen Len: 23.6657
  • Bleu-1: 63.2918
  • Bleu-2: 44.1514
  • Bleu-3: 31.6161
  • Bleu-4: 23.2357
  • Meteor: 0.5330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 7575
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor
0.7348 1.0 1189 0.9407 61.8229 29.2612 58.4443 58.4242 25.6717 60.1910 40.8083 28.4530 20.4451 0.5069
0.7794 2.0 2378 0.8899 62.6968 30.8608 59.6691 59.7023 22.2829 60.8908 42.4421 30.4327 22.2917 0.5153
0.6464 3.0 3567 0.8960 63.399 31.2227 60.0505 60.0958 24.0847 62.5712 43.4595 30.9384 22.7195 0.5269
0.5419 4.0 4756 0.9126 63.4944 30.9818 60.1074 60.095 22.9259 61.9100 42.9890 30.6511 22.4916 0.5242
0.4666 5.0 5945 0.9249 63.9576 31.6972 60.6369 60.6662 23.708 63.1527 44.3529 32.3818 24.4188 0.5339
0.4009 6.0 7134 0.9534 63.6549 32.2835 60.3324 60.344 23.4327 63.0061 44.5392 32.1776 23.9321 0.5342
0.3523 7.0 8323 0.9684 63.4933 31.4582 60.1644 60.1675 23.6657 63.2918 44.1514 31.6161 23.2357 0.5330

Framework versions

  • Transformers 4.30.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3