whisper-medium-4-F / README.md
nicolarsen's picture
Training in progress, step 1000
5d14aca verified
|
raw
history blame
2.26 kB
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper da-nst
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: da
          split: test
          args: da
        metrics:
          - name: Wer
            type: wer
            value: 28.79345603271984

Whisper da-nst

This model is a fine-tuned version of openai/whisper-medium on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9046
  • Wer: 28.7935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0092 4.02 1000 0.8223 32.0654
0.0039 9.01 2000 0.8388 30.5203
0.0001 13.02 3000 0.8310 29.4479
0.0 18.01 4000 0.8598 28.9571
0.0 23.0 5000 0.8776 28.9162
0.0 27.02 6000 0.8911 28.9162
0.0 32.01 7000 0.9006 28.8298
0.0 36.03 8000 0.9046 28.7935

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1