onizukal's picture
End of training
52ab9a3 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.649850827230811

Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1823
  • Accuracy: 0.6499

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1635 1.0 924 1.1860 0.5948
1.0619 2.0 1848 1.0310 0.6455
0.646 3.0 2772 1.0620 0.6509
0.3294 4.0 3696 1.2169 0.6599
0.2648 5.0 4620 1.4374 0.6455
0.1957 6.0 5544 1.7164 0.6420
0.131 7.0 6468 2.0272 0.6488
0.0817 8.0 7392 2.2750 0.6447
0.0483 9.0 8316 2.4384 0.6431
0.0451 10.0 9240 2.6186 0.6447
0.0224 11.0 10164 2.7368 0.6463
0.0134 12.0 11088 2.9439 0.6477
0.0023 13.0 12012 2.9691 0.6520
0.0074 14.0 12936 3.0721 0.6450
0.0231 15.0 13860 3.1373 0.6499
0.0004 16.0 14784 3.2089 0.6474
0.0062 17.0 15708 3.1483 0.6493
0.0132 18.0 16632 3.1830 0.6515
0.0034 19.0 17556 3.1843 0.6474
0.0796 20.0 18480 3.1823 0.6499

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1