|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.649850827230811
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5
|
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 3.1823
|
|
- Accuracy: 0.6499
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0001
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 1.1635 | 1.0 | 924 | 1.1860 | 0.5948 |
|
|
| 1.0619 | 2.0 | 1848 | 1.0310 | 0.6455 |
|
|
| 0.646 | 3.0 | 2772 | 1.0620 | 0.6509 |
|
|
| 0.3294 | 4.0 | 3696 | 1.2169 | 0.6599 |
|
|
| 0.2648 | 5.0 | 4620 | 1.4374 | 0.6455 |
|
|
| 0.1957 | 6.0 | 5544 | 1.7164 | 0.6420 |
|
|
| 0.131 | 7.0 | 6468 | 2.0272 | 0.6488 |
|
|
| 0.0817 | 8.0 | 7392 | 2.2750 | 0.6447 |
|
|
| 0.0483 | 9.0 | 8316 | 2.4384 | 0.6431 |
|
|
| 0.0451 | 10.0 | 9240 | 2.6186 | 0.6447 |
|
|
| 0.0224 | 11.0 | 10164 | 2.7368 | 0.6463 |
|
|
| 0.0134 | 12.0 | 11088 | 2.9439 | 0.6477 |
|
|
| 0.0023 | 13.0 | 12012 | 2.9691 | 0.6520 |
|
|
| 0.0074 | 14.0 | 12936 | 3.0721 | 0.6450 |
|
|
| 0.0231 | 15.0 | 13860 | 3.1373 | 0.6499 |
|
|
| 0.0004 | 16.0 | 14784 | 3.2089 | 0.6474 |
|
|
| 0.0062 | 17.0 | 15708 | 3.1483 | 0.6493 |
|
|
| 0.0132 | 18.0 | 16632 | 3.1830 | 0.6515 |
|
|
| 0.0034 | 19.0 | 17556 | 3.1843 | 0.6474 |
|
|
| 0.0796 | 20.0 | 18480 | 3.1823 | 0.6499 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.35.0
|
|
- Pytorch 2.1.0
|
|
- Datasets 2.14.6
|
|
- Tokenizers 0.14.1
|
|
|