Bluesky Community

community
Activity Feed

AI & ML interests

Tools for Bluesky πŸ¦‹

bluesky-community's activity

davanstrienΒ 
posted an update 6 days ago
cfahlgren1Β 
posted an update 6 days ago
view post
Post
1779
If you haven't seen yet, we just released Inference Providers πŸ”€

> 4 new serverless inference providers on the Hub 🀯
> Use your HF API key or personal key with all providers πŸ”‘
> Chat with Deepseek R1, V3, and more on HF Hub πŸ‹
> We support Sambanova, TogetherAI, Replicate, and Fal.ai πŸ’ͺ

Best of all, we don't charge any markup on top of the provider 🫰 Have you tried it out yet? HF Pro accounts get $2 of free usage for the provider inference.
davanstrienΒ 
posted an update 7 days ago
clemΒ 
posted an update 7 days ago
view post
Post
6803
AI is not a zero-sum game. Open-source AI is the tide that lifts all boats!
davanstrienΒ 
posted an update 7 days ago
view post
Post
1950
🌍 Big step for multilingual AI data!

The Hugging Face community has rated educational content in languages spoken by 1.6 billion people! New additions:
β€’ Japanese
β€’ Italian
β€’ Old High German

Learn more and contribute: https://huggingface.co/blog/davanstrien/fineweb2-community

These ratings can help enhance training data for major world languages.
  • 1 reply
Β·
clemΒ 
posted an update 10 days ago
nataliaElvΒ 
posted an update 18 days ago
view post
Post
1433
New chapter in the Hugging Face NLP course! πŸ€— πŸš€

We've added a new chapter about the very basics of Argilla to the Hugging Face NLP course. Learn how to set up an Argilla instance, load & annotate datasets, and export them to the Hub.Β 

Any feedback for improvements welcome!

https://huggingface.co/learn/nlp-course/chapter10
davanstrienΒ 
posted an update 21 days ago
view post
Post
3051
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

πŸ” What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
Β·
davanstrienΒ 
posted an update 25 days ago
view post
Post
2218
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co/blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
Β·
cfahlgren1Β 
posted an update 25 days ago
view post
Post
1730
Wow, I just added Langfuse tracing to the Deepseek Artifacts app and it's really nice πŸ”₯

It allows me to visualize and track more things along with the cfahlgren1/react-code-instructions dataset.

It was just added as a one click Docker Space template, so it's super easy to self host πŸ’ͺ
BrigitteTousiΒ 
posted an update 25 days ago
view post
Post
1112
Community fine-tuned models are more carbon efficient than the models they are derived from! πŸ₯³πŸŒΏ

@alozowski @clefourrier @SaylorTwift @albertvillanova evaluated COβ‚‚ emissions associated with model inference for over 3000 models on the Open LLM Leaderboard. Interesting trends and new insights emerged...πŸ‘€

Blog Post: https://huggingface.co/blog/leaderboard-emissions-analysis

Leaderboard: open-llm-leaderboard/open_llm_leaderboard
nataliaElvΒ 
posted an update 25 days ago
view post
Post
547
Do you want to easily save annotations to a Dataset in the Hub?

In the last version of Argilla (v2.6.0), you can export your data directly from the UI to the Hub.

Check all the changes and update to the latest version: https://github.com/argilla-io/argilla/releases/tag/v2.6.0
cfahlgren1Β 
posted an update about 1 month ago
view post
Post
2241
You'll notice the AI in the SQL Console is much better at working with chatml conversations:

Here's example of unnesting the cfahlgren1/react-code-instructions in less than 10 seconds by asking it. Check it out here: cfahlgren1/react-code-instructions

- "show me the average assistant response length"
- "extract user, system, and assistant messages into separate columns"

It's super easy to work with conversational datasets now with natural language πŸ—£οΈ





  • 2 replies
Β·
clemΒ 
posted an update about 1 month ago
view post
Post
4235
Cool to see @ylecun joining the top 10 of most followed on HF!

(and leaderboard by @mvaloatto is here: mvaloatto/TCTF)
  • 2 replies
Β·
cfahlgren1Β 
posted an update about 1 month ago
davanstrienΒ 
posted an update about 1 month ago
view post
Post
3208
πŸ‡ΈπŸ‡° Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co/blog/davanstrien/fineweb2-community
  • 3 replies
Β·
davanstrienΒ 
posted an update about 2 months ago
view post
Post
1795
Introducing FineWeb-C πŸŒπŸŽ“, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
clemΒ 
posted an update about 2 months ago
view post
Post
1983
Coming back to Paris Friday to open our new Hugging Face office!

We're at capacity for the party but add your name in the waiting list as we're trying to privatize the passage du Caire for extra space for robots πŸ€–πŸ¦ΎπŸ¦Ώ

https://t.co/enkFXjWndJ
  • 1 reply
Β·
nataliaElvΒ 
posted an update about 2 months ago
view post
Post
1664
If you are still wondering how the FineWeb2 annotations are done, how to follow the guidelines or how Argilla works, this is your video!

I go through a few samples of the FineWeb2 dataset and classify them based on their educational content. Check it out!

https://www.youtube.com/watch?v=_-ORB4WAVGU
nataliaElvΒ 
posted an update about 2 months ago
view post
Post
1294
How do your annotations for FineWeb2 compare to your teammates'?

I started contributing some annotations to the FineWeb2 collaborative annotation sprint and I wanted to know if my labelling trends were similar to those of my teammates.

I did some analysis and I wasn't surprised to see that I'm being a bit harsher on my evaluations than my mates πŸ˜‚


Do you want to see how your annotations compare to others?
πŸ‘‰ Go to this Gradio space: nataliaElv/fineweb2_compare_my_annotations
✍️ Enter the dataset that you've contributed to and your Hugging Face username.

How were your results?
- Contribute some annotations: data-is-better-together/fineweb-c
- Join your language channel in Rocket chat: HuggingFaceFW/discussion