whisper-small-npsc / README.md
pere's picture
update model card README.md
da89aac
metadata
language:
  - nn
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-small-npsc
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: 16K_mp3_bokmaal
          split: train
          args: 16K_mp3_bokmaal
        metrics:
          - name: Wer
            type: wer
            value: 12.925418803583286

whisper-small-npsc

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2028
  • Wer: 12.9254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3922 0.18 500 0.3975 24.2055
0.2893 0.36 1000 0.3139 20.1507
0.2471 0.54 1500 0.2733 17.4449
0.2159 0.72 2000 0.2488 16.2681
0.2195 0.89 2500 0.2304 15.0577
0.1178 1.07 3000 0.2245 14.5968
0.1099 1.25 3500 0.2183 14.1118
0.1059 1.43 4000 0.2136 13.7914
0.1156 1.61 4500 0.2072 13.7491
0.1025 1.79 5000 0.2034 13.1515
0.1123 1.97 5500 0.2006 13.0284
0.0734 2.15 6000 0.2028 12.9254

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1