pffaundez's picture
End of training
252f377 verified
|
raw
history blame
2.33 kB
metadata
license: apache-2.0
base_model: google/electra-base-discriminator
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: trueparagraph.ai-ELECTRA
    results: []

trueparagraph.ai-ELECTRA

This model is a fine-tuned version of google/electra-base-discriminator on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9430
  • F1: 0.9421
  • Precision: 0.9528
  • Recall: 0.9316
  • Mcc: 0.8862
  • Roc Auc: 0.9429
  • Pr Auc: 0.9217
  • Log Loss: 0.8825
  • Loss: 0.2952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Mcc Roc Auc Pr Auc Log Loss Validation Loss
0.5401 0.6297 500 0.7694 0.7044 0.9732 0.5519 0.5963 0.7684 0.7602 3.5789 0.6109
0.3122 1.2594 1000 0.9225 0.9231 0.9122 0.9342 0.8452 0.9225 0.8850 1.1485 0.2368
0.2301 1.8892 1500 0.8670 0.8811 0.7942 0.9892 0.7573 0.8676 0.7910 1.9476 0.3654
0.1608 2.5189 2000 0.9348 0.9364 0.9103 0.9639 0.8711 0.9349 0.8955 1.0090 0.2677
0.1146 3.1486 2500 0.9430 0.9421 0.9528 0.9316 0.8862 0.9429 0.9217 0.8825 0.2952

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1