|
--- |
|
license: apache-2.0 |
|
base_model: google/electra-base-discriminator |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: trueparagraph.ai-ELECTRA |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# trueparagraph.ai-ELECTRA |
|
|
|
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.9430 |
|
- F1: 0.9421 |
|
- Precision: 0.9528 |
|
- Recall: 0.9316 |
|
- Mcc: 0.8862 |
|
- Roc Auc: 0.9429 |
|
- Pr Auc: 0.9217 |
|
- Log Loss: 0.8825 |
|
- Loss: 0.2952 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Mcc | Roc Auc | Pr Auc | Log Loss | Validation Loss | |
|
|:-------------:|:------:|:----:|:--------:|:------:|:---------:|:------:|:------:|:-------:|:------:|:--------:|:---------------:| |
|
| 0.5401 | 0.6297 | 500 | 0.7694 | 0.7044 | 0.9732 | 0.5519 | 0.5963 | 0.7684 | 0.7602 | 3.5789 | 0.6109 | |
|
| 0.3122 | 1.2594 | 1000 | 0.9225 | 0.9231 | 0.9122 | 0.9342 | 0.8452 | 0.9225 | 0.8850 | 1.1485 | 0.2368 | |
|
| 0.2301 | 1.8892 | 1500 | 0.8670 | 0.8811 | 0.7942 | 0.9892 | 0.7573 | 0.8676 | 0.7910 | 1.9476 | 0.3654 | |
|
| 0.1608 | 2.5189 | 2000 | 0.9348 | 0.9364 | 0.9103 | 0.9639 | 0.8711 | 0.9349 | 0.8955 | 1.0090 | 0.2677 | |
|
| 0.1146 | 3.1486 | 2500 | 0.9430 | 0.9421 | 0.9528 | 0.9316 | 0.8862 | 0.9429 | 0.9217 | 0.8825 | 0.2952 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|