metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10501
- loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
- source_sentence: 아침마다 제가 원하는 시간에 맛있는 조식도 먹을 수 있었어요.
sentences:
- 매일 아침 내가 원하는 시간에 맛있는 아침식사를 먹을 수 있었습니다.
- 태풍과 폭염 중 어떤 것이 올까요?
- 떼르미니 역에서 5분 이내고 주변에 마트 식당 빵집 등등 편의시설도 가득합니다.
- source_sentence: 아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다.
sentences:
- 좋은 위치와 좋은 숙소와 좋은 호스트가 있습니다.
- 위치도 룸도 모든 기 완벽한 곳이었다!
- 콜센터 시설 내외부 방역도 철저히 실시하기로 했다.
- source_sentence: 굳이 모든 메일을 다 가지고 있을 필요는 없어. 중요하지 않은 학회 홍보 메일은 지워도 돼.
sentences:
- 바르셀로나에 가실 거면 시내에 안 계셔도 된다면 이 숙소를 추천해 드릴게요!
- 학교에서 온 메일 말고 학회 홍보메일만 삭제해줘
- 사그라다 파밀리아까지는 걸어서 10분거리구요.
- source_sentence: 더운물로 세탁하자.
sentences:
- 네가 시간 떼울 때 보고싶은 오락 프로그램 이름 알려주면 찾아볼께
- 장인어른과의 약속에 정시에 가지 말고 일찍 나오세요.
- 안방 취침등 또는 형광등은 어떻게 켜?
- source_sentence: 또한 숙소는 청결하고 아늑한 장소입니다.
sentences:
- 또한, 숙소는 깨끗하고 아늑한 곳입니다.
- 깜빡하고 백화점 세일 일정 잊어버리면 안된다.
- 전체적으로 집 내부가 너무 예뻤어요.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
co2_eq_emissions:
emissions: 6.29574616666927
energy_consumed: 0.014386922744112848
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: Intel(R) Core(TM) i7-14700KF
ram_total_size: 63.83439254760742
hours_used: 0.044
hardware_used: 1 x NVIDIA GeForce RTX 4090
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.3477070403258199
name: Pearson Cosine
- type: spearman_cosine
value: 0.35560473197486514
name: Spearman Cosine
- type: pearson_cosine
value: 0.9624051736790307
name: Pearson Cosine
- type: spearman_cosine
value: 0.922152297127282
name: Spearman Cosine
SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'또한 숙소는 청결하고 아늑한 장소입니다.',
'또한, 숙소는 깨끗하고 아늑한 곳입니다.',
'깜빡하고 백화점 세일 일정 잊어버리면 안된다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3477 |
spearman_cosine | 0.3556 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9624 |
spearman_cosine | 0.9222 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 19.8 tokens
- max: 81 tokens
- min: 5 tokens
- mean: 19.36 tokens
- max: 64 tokens
- min: 0.0
- mean: 0.46
- max: 1.0
- Samples:
sentence_0 sentence_1 label 아울러, 4월 9일부터 5월말까지 EBS 교육사이트를 데이터 걱정 없이 이용할 수 있습니다
현장방문 신청 둘째 주인 11월 2일부터 11월 6일까지는 구분없이 신청할 수 있다.
0.08
내일 오전에 있는 수업 몇 시에 시작하더라?
남자친구 생일이 언제야?
0.0
아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다.
콜센터 시설 내외부 방역도 철저히 실시하기로 했다.
0.12
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Noneprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
0 | 0 | - | 0.3556 |
0.7610 | 500 | 0.0279 | - |
1.0 | 657 | - | 0.9086 |
1.5221 | 1000 | 0.0087 | 0.9158 |
2.0 | 1314 | - | 0.9177 |
2.2831 | 1500 | 0.0046 | - |
3.0 | 1971 | - | 0.9191 |
3.0441 | 2000 | 0.0034 | 0.9199 |
3.8052 | 2500 | 0.0027 | - |
4.0 | 2628 | - | 0.9222 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.014 kWh
- Carbon Emitted: 0.006 kg of CO2
- Hours Used: 0.044 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 4090
- CPU Model: Intel(R) Core(TM) i7-14700KF
- RAM Size: 63.83 GB
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.40.1
- PyTorch: 2.5.1+cu118
- Accelerate: 0.29.3
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}