pjh6818's picture
Upload folder using huggingface_hub
7abce0d verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10501
  - loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
  - source_sentence: 아침마다 제가 원하는 시간에 맛있는 조식도 먹을  있었어요.
    sentences:
      - 매일 아침 내가 원하는 시간에 맛있는 아침식사를 먹을  있었습니다.
      - 태풍과 폭염  어떤 것이 올까요?
      - 떼르미니 역에서 5 이내고 주변에 마트 식당 빵집 등등 편의시설도 가득합니다.
  - source_sentence: 아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다.
    sentences:
      - 좋은 위치와 좋은 숙소와 좋은 호스트가 있습니다.
      - 위치도 룸도 모든  완벽한 곳이었다!
      - 콜센터 시설 내외부 방역도 철저히 실시하기로 했다.
  - source_sentence: 굳이 모든 메일을  가지고 있을 필요는 없어. 중요하지 않은 학회 홍보 메일은 지워도 돼.
    sentences:
      - 바르셀로나에 가실 거면 시내에  계셔도 된다면  숙소를 추천해 드릴게요!
      - 학교에서  메일 말고 학회 홍보메일만 삭제해줘
      - 사그라다 파밀리아까지는 걸어서 10분거리구요.
  - source_sentence: 더운물로 세탁하자.
    sentences:
      - 네가 시간 떼울  보고싶은 오락 프로그램 이름 알려주면 찾아볼께
      - 장인어른과의 약속에 정시에 가지 말고 일찍 나오세요.
      - 안방 취침등 또는 형광등은 어떻게 켜?
  - source_sentence: 또한 숙소는 청결하고 아늑한 장소입니다.
    sentences:
      - 또한, 숙소는 깨끗하고 아늑한 곳입니다.
      - 깜빡하고 백화점 세일 일정 잊어버리면 안된다.
      - 전체적으로  내부가 너무 예뻤어요.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
co2_eq_emissions:
  emissions: 6.29574616666927
  energy_consumed: 0.014386922744112848
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: Intel(R) Core(TM) i7-14700KF
  ram_total_size: 63.83439254760742
  hours_used: 0.044
  hardware_used: 1 x NVIDIA GeForce RTX 4090
model-index:
  - name: SentenceTransformer based on klue/roberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.3477070403258199
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.35560473197486514
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.9624051736790307
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.922152297127282
            name: Spearman Cosine

SentenceTransformer based on klue/roberta-base

This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: klue/roberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '또한 숙소는 청결하고 아늑한 장소입니다.',
    '또한, 숙소는 깨끗하고 아늑한 곳입니다.',
    '깜빡하고 백화점 세일 일정 잊어버리면 안된다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.3477
spearman_cosine 0.3556

Semantic Similarity

Metric Value
pearson_cosine 0.9624
spearman_cosine 0.9222

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,501 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 6 tokens
    • mean: 19.8 tokens
    • max: 81 tokens
    • min: 5 tokens
    • mean: 19.36 tokens
    • max: 64 tokens
    • min: 0.0
    • mean: 0.46
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    아울러, 4월 9일부터 5월말까지 EBS 교육사이트를 데이터 걱정 없이 이용할 수 있습니다 현장방문 신청 둘째 주인 11월 2일부터 11월 6일까지는 구분없이 신청할 수 있다. 0.08
    내일 오전에 있는 수업 몇 시에 시작하더라? 남자친구 생일이 언제야? 0.0
    아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다. 콜센터 시설 내외부 방역도 철저히 실시하기로 했다. 0.12
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss spearman_cosine
0 0 - 0.3556
0.7610 500 0.0279 -
1.0 657 - 0.9086
1.5221 1000 0.0087 0.9158
2.0 1314 - 0.9177
2.2831 1500 0.0046 -
3.0 1971 - 0.9191
3.0441 2000 0.0034 0.9199
3.8052 2500 0.0027 -
4.0 2628 - 0.9222

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.014 kWh
  • Carbon Emitted: 0.006 kg of CO2
  • Hours Used: 0.044 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 4090
  • CPU Model: Intel(R) Core(TM) i7-14700KF
  • RAM Size: 63.83 GB

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.3.1
  • Transformers: 4.40.1
  • PyTorch: 2.5.1+cu118
  • Accelerate: 0.29.3
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}