eduagarcia's picture
Add new SentenceTransformer model.
9f8e470 verified
|
raw
history blame
2.42 kB
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- pt
---
# mteb-pt/average_pt_nilc_wang2vec_skip_s1000
This is an adaptation of pre-trained Portuguese Wang2Vec Word Embeddings to a [sentence-transformers](https://www.SBERT.net) model.
The original pre-trained word embeddings can be found at: [http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc](http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc).
This model maps sentences & paragraphs to a 1000 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mteb-pt/average_pt_nilc_wang2vec_skip_s1000')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Portuguese MTEB Leaderboard*: [mteb-pt/leaderboard](https://huggingface.co/spaces/mteb-pt/leaderboard)
## Full Model Architecture
```
SentenceTransformer(
(0): WordEmbeddings(
(emb_layer): Embedding(929607, 1000)
)
(1): Pooling({'word_embedding_dimension': 1000, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
```bibtex
@inproceedings{hartmann2017portuguese,
title = {Portuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks},
author = {Hartmann, Nathan S and
Fonseca, Erick R and
Shulby, Christopher D and
Treviso, Marcos V and
Rodrigues, J{'{e}}ssica S and
Alu{'{\i}}sio, Sandra Maria},
year = {2017},
publisher = {SBC},
booktitle = {Brazilian Symposium in Information and Human Language Technology - STIL},
url = {https://sol.sbc.org.br/index.php/stil/article/view/4008}
}
```