|
--- |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
language: |
|
- pt |
|
--- |
|
|
|
# mteb-pt/average_pt_nilc_wang2vec_skip_s1000 |
|
|
|
This is an adaptation of pre-trained Portuguese Wang2Vec Word Embeddings to a [sentence-transformers](https://www.SBERT.net) model. |
|
|
|
The original pre-trained word embeddings can be found at: [http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc](http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc). |
|
|
|
This model maps sentences & paragraphs to a 1000 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('mteb-pt/average_pt_nilc_wang2vec_skip_s1000') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
For an automated evaluation of this model, see the *Portuguese MTEB Leaderboard*: [mteb-pt/leaderboard](https://huggingface.co/spaces/mteb-pt/leaderboard) |
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): WordEmbeddings( |
|
(emb_layer): Embedding(929607, 1000) |
|
) |
|
(1): Pooling({'word_embedding_dimension': 1000, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
```bibtex |
|
@inproceedings{hartmann2017portuguese, |
|
title = {Portuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks}, |
|
author = {Hartmann, Nathan S and |
|
Fonseca, Erick R and |
|
Shulby, Christopher D and |
|
Treviso, Marcos V and |
|
Rodrigues, J{'{e}}ssica S and |
|
Alu{'{\i}}sio, Sandra Maria}, |
|
year = {2017}, |
|
publisher = {SBC}, |
|
booktitle = {Brazilian Symposium in Information and Human Language Technology - STIL}, |
|
url = {https://sol.sbc.org.br/index.php/stil/article/view/4008} |
|
} |
|
``` |