pt-sk's picture
Update README.md
9098175 verified
|
raw
history blame
2.16 kB
metadata
license: apache-2.0
base_model: Distilbert-finetuned-emotion
tags:
  - generated_from_trainer
  - Pytorch
datasets:
  - emotion
metrics:
  - accuracy
  - f1
model-index:
  - name: Distilbert-finetuned-emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9235
          - name: F1
            type: f1
            value: 0.923296474937779
language:
  - en
library_name: transformers

Distilbert-finetuned-emotion

Distilbert is a variant of bert model(one of LLM models). This model with a classification head is used to classify the emotions of the input tweet. This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2195
  • Accuracy: 0.9235
  • F1: 0.9233

Emotion Labels

  • label_0: Sadness
  • label_1: Joy
  • label_2: Love
  • label_3: Anger
  • label_4: Fear
  • label_5: Surprise

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.8537 1.0 250 0.3235 0.897 0.8958
0.2506 2.0 500 0.2195 0.9235 0.9233

Validation metrics

  • test_loss : 0.2194512039422989
  • test_accuracy : 0.9235
  • test_f1 : 0.923296474937779

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1