|
--- |
|
library_name: pytorch |
|
license: mit |
|
pipeline_tag: depth-estimation |
|
tags: |
|
- quantized |
|
- android |
|
|
|
--- |
|
|
|
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/midas_quantized/web-assets/model_demo.png) |
|
|
|
# Midas-V2-Quantized: Optimized for Mobile Deployment |
|
## Quantized Deep Convolutional Neural Network model for depth estimation |
|
|
|
|
|
Midas is designed for estimating depth at each point in an image. |
|
|
|
This model is an implementation of Midas-V2-Quantized found [here](https://github.com/isl-org/MiDaS). |
|
|
|
|
|
This repository provides scripts to run Midas-V2-Quantized on Qualcomm® devices. |
|
More details on model performance across various devices, can be found |
|
[here](https://aihub.qualcomm.com/models/midas_quantized). |
|
|
|
|
|
### Model Details |
|
|
|
- **Model Type:** Depth estimation |
|
- **Model Stats:** |
|
- Model checkpoint: MiDaS_small |
|
- Input resolution: 256x256 |
|
- Number of parameters: 16.6M |
|
- Model size: 16.6 MB |
|
|
|
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.101 ms | 0 - 58 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.436 ms | 0 - 63 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) | |
|
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 8.722 ms | 1 - 5 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) | |
|
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.766 ms | 0 - 27 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.006 ms | 0 - 27 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) | |
|
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 7.116 ms | 1 - 280 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) | |
|
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.712 ms | 0 - 25 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.01 ms | 0 - 22 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 7.852 ms | 1 - 209 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) | |
|
| Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.77 ms | 0 - 28 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.868 ms | 0 - 7 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 15.397 ms | 0 - 3 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.083 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.308 ms | 0 - 1 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | SA7255P ADP | SA7255P | TFLITE | 11.089 ms | 0 - 23 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | SA7255P ADP | SA7255P | QNN | 12.231 ms | 0 - 10 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.102 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.326 ms | 0 - 1 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | SA8295P ADP | SA8295P | TFLITE | 1.943 ms | 0 - 23 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | SA8295P ADP | SA8295P | QNN | 2.43 ms | 0 - 6 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.108 ms | 0 - 60 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.327 ms | 0 - 2 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | SA8775P ADP | SA8775P | TFLITE | 1.605 ms | 0 - 26 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | SA8775P ADP | SA8775P | QNN | 2.096 ms | 0 - 6 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.445 ms | 0 - 31 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) | |
|
| Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.816 ms | 0 - 29 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.471 ms | 0 - 0 MB | INT8 | NPU | Use Export Script | |
|
| Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.848 ms | 24 - 24 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) | |
|
|
|
|
|
|
|
|
|
## Installation |
|
|
|
This model can be installed as a Python package via pip. |
|
|
|
```bash |
|
pip install "qai-hub-models[midas_quantized]" |
|
``` |
|
|
|
|
|
|
|
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device |
|
|
|
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your |
|
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. |
|
|
|
With this API token, you can configure your client to run models on the cloud |
|
hosted devices. |
|
```bash |
|
qai-hub configure --api_token API_TOKEN |
|
``` |
|
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. |
|
|
|
|
|
|
|
## Demo off target |
|
|
|
The package contains a simple end-to-end demo that downloads pre-trained |
|
weights and runs this model on a sample input. |
|
|
|
```bash |
|
python -m qai_hub_models.models.midas_quantized.demo |
|
``` |
|
|
|
The above demo runs a reference implementation of pre-processing, model |
|
inference, and post processing. |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.midas_quantized.demo |
|
``` |
|
|
|
|
|
### Run model on a cloud-hosted device |
|
|
|
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® |
|
device. This script does the following: |
|
* Performance check on-device on a cloud-hosted device |
|
* Downloads compiled assets that can be deployed on-device for Android. |
|
* Accuracy check between PyTorch and on-device outputs. |
|
|
|
```bash |
|
python -m qai_hub_models.models.midas_quantized.export |
|
``` |
|
``` |
|
Profiling Results |
|
------------------------------------------------------------ |
|
Midas-V2-Quantized |
|
Device : Samsung Galaxy S23 (13) |
|
Runtime : TFLITE |
|
Estimated inference time (ms) : 1.1 |
|
Estimated peak memory usage (MB): [0, 58] |
|
Total # Ops : 145 |
|
Compute Unit(s) : NPU (145 ops) |
|
``` |
|
|
|
|
|
|
|
|
|
## Run demo on a cloud-hosted device |
|
|
|
You can also run the demo on-device. |
|
|
|
```bash |
|
python -m qai_hub_models.models.midas_quantized.demo --on-device |
|
``` |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.midas_quantized.demo -- --on-device |
|
``` |
|
|
|
|
|
## Deploying compiled model to Android |
|
|
|
|
|
The models can be deployed using multiple runtimes: |
|
- TensorFlow Lite (`.tflite` export): [This |
|
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a |
|
guide to deploy the .tflite model in an Android application. |
|
|
|
|
|
- QNN (`.so` export ): This [sample |
|
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) |
|
provides instructions on how to use the `.so` shared library in an Android application. |
|
|
|
|
|
## View on Qualcomm® AI Hub |
|
Get more details on Midas-V2-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/midas_quantized). |
|
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) |
|
|
|
|
|
## License |
|
* The license for the original implementation of Midas-V2-Quantized can be found [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) |
|
|
|
|
|
|
|
## References |
|
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3) |
|
* [Source Model Implementation](https://github.com/isl-org/MiDaS) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
|
|
|