bert_base_tcm_0.6 / README.md
ricardo-filho's picture
update model card README.md
d72b626
|
raw
history blame
2.02 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: bert_base_tcm_0.6
    results: []

bert_base_tcm_0.6

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0109
  • Criterio Julgamento Precision: 0.8409
  • Criterio Julgamento Recall: 0.925
  • Criterio Julgamento F1: 0.8810
  • Criterio Julgamento Number: 80
  • Data Sessao Precision: 0.7838
  • Data Sessao Recall: 0.8056
  • Data Sessao F1: 0.7945
  • Data Sessao Number: 36
  • Modalidade Licitacao Precision: 0.9517
  • Modalidade Licitacao Recall: 0.9718
  • Modalidade Licitacao F1: 0.9617
  • Modalidade Licitacao Number: 284
  • Numero Exercicio Precision: 0.9706
  • Numero Exercicio Recall: 0.9925
  • Numero Exercicio F1: 0.9814
  • Numero Exercicio Number: 133
  • Objeto Licitacao Precision: 0.6143
  • Objeto Licitacao Recall: 0.7544
  • Objeto Licitacao F1: 0.6772
  • Objeto Licitacao Number: 57
  • Valor Objeto Precision: 0.8571
  • Valor Objeto Recall: 1.0
  • Valor Objeto F1: 0.9231
  • Valor Objeto Number: 6
  • Overall Precision: 0.8917
  • Overall Recall: 0.9396
  • Overall F1: 0.9150
  • Overall Accuracy: 0.9980

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1