|
--- |
|
tags: |
|
- LoRA |
|
- QLoRa |
|
- LoRA Adapter |
|
- LLaMA |
|
model-index: |
|
- name: lora-sql-guanaco-13b-adapter |
|
results: [] |
|
datasets: |
|
- richardr1126/sql-create-context_guanaco_style |
|
spaces: |
|
- richardr1126/NL2SQL-Guanaco-Chat |
|
--- |
|
|
|
# lora-sql-guanaco-13b-adapter |
|
|
|
This is a LoRA adapter for [richardr1126/guanaco-13b-merged](https://huggingface.co/richardr1126/guanaco-13b-merged), or any other merged guanaco-13b model, fine tuned from LLaMA. |
|
<br> |
|
This LoRA was fine-tuned using QLoRA techniques on the [richardr1126/sql-create-context_guanaco_style](https://huggingface.co/datasets/richardr1126/sql-create-context_guanaco_style) dataset. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- training_steps: 1875 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.0 |
|
- Tokenizers 0.13.3 |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{dettmers2023qlora, |
|
title={QLoRA: Efficient Finetuning of Quantized LLMs}, |
|
author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke}, |
|
journal={arXiv preprint arXiv:2305.14314}, |
|
year={2023} |
|
} |
|
``` |