ruchita1010's picture
End of training
bd5b819
|
raw
history blame
2.8 kB
metadata
base_model: google/pegasus-cnn_dailymail
tags:
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
model-index:
  - name: pegasuscnn-dailymail_billsum_model
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: billsum
          type: billsum
          config: default
          split: ca_test
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4804

pegasuscnn-dailymail_billsum_model

This model is a fine-tuned version of google/pegasus-cnn_dailymail on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6747
  • Rouge1: 0.4804
  • Rouge2: 0.2362
  • Rougel: 0.3218
  • Rougelsum: 0.3218
  • Gen Len: 123.3669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.6227 1.0 198 1.9091 0.4289 0.1938 0.2945 0.2947 120.1855
1.9714 2.0 396 1.8147 0.4517 0.2093 0.3059 0.3061 120.7742
1.903 3.0 594 1.7646 0.4607 0.2207 0.3098 0.3102 121.121
1.7973 4.0 792 1.7362 0.4719 0.2264 0.3179 0.3178 122.3185
1.7868 5.0 990 1.7137 0.4779 0.2314 0.3191 0.3192 123.2379
1.7457 6.0 1188 1.6958 0.4748 0.2296 0.3171 0.317 123.2056
1.6687 7.0 1386 1.6873 0.4795 0.2352 0.3216 0.3216 123.2702
1.6751 8.0 1584 1.6806 0.4835 0.2384 0.3248 0.3245 122.8266
1.6564 9.0 1782 1.6758 0.4814 0.2359 0.3217 0.3216 123.2984
1.6333 10.0 1980 1.6747 0.4804 0.2362 0.3218 0.3218 123.3669

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1