|
--- |
|
base_model: google/pegasus-cnn_dailymail |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- billsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasuscnn-dailymail_billsum_model |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: billsum |
|
type: billsum |
|
config: default |
|
split: ca_test |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.4804 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasuscnn-dailymail_billsum_model |
|
|
|
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the billsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6747 |
|
- Rouge1: 0.4804 |
|
- Rouge2: 0.2362 |
|
- Rougel: 0.3218 |
|
- Rougelsum: 0.3218 |
|
- Gen Len: 123.3669 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| 2.6227 | 1.0 | 198 | 1.9091 | 0.4289 | 0.1938 | 0.2945 | 0.2947 | 120.1855 | |
|
| 1.9714 | 2.0 | 396 | 1.8147 | 0.4517 | 0.2093 | 0.3059 | 0.3061 | 120.7742 | |
|
| 1.903 | 3.0 | 594 | 1.7646 | 0.4607 | 0.2207 | 0.3098 | 0.3102 | 121.121 | |
|
| 1.7973 | 4.0 | 792 | 1.7362 | 0.4719 | 0.2264 | 0.3179 | 0.3178 | 122.3185 | |
|
| 1.7868 | 5.0 | 990 | 1.7137 | 0.4779 | 0.2314 | 0.3191 | 0.3192 | 123.2379 | |
|
| 1.7457 | 6.0 | 1188 | 1.6958 | 0.4748 | 0.2296 | 0.3171 | 0.317 | 123.2056 | |
|
| 1.6687 | 7.0 | 1386 | 1.6873 | 0.4795 | 0.2352 | 0.3216 | 0.3216 | 123.2702 | |
|
| 1.6751 | 8.0 | 1584 | 1.6806 | 0.4835 | 0.2384 | 0.3248 | 0.3245 | 122.8266 | |
|
| 1.6564 | 9.0 | 1782 | 1.6758 | 0.4814 | 0.2359 | 0.3217 | 0.3216 | 123.2984 | |
|
| 1.6333 | 10.0 | 1980 | 1.6747 | 0.4804 | 0.2362 | 0.3218 | 0.3218 | 123.3669 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|