worksphere
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sabber/worksphere-regulations-embedding_bge")
# Run inference
sentences = [
"How can I ensure that the curing compound we receive at the job site meets the required specifications with the manufacturer's original containers and labels intact?",
"8. Curing:\n03 00 00\nCONCRETE AND CONCRETE REINFORCING\nPage 10 of 18\n6) Curing compound to be delivered to the job site in the manufacturer's original containers only, with original label containing the following:\na) Manufacturer's name\nb) Trade name of the material\nc) Batch number or symbol with which test samples may be correlated",
'2. For Large Wind Energy Systems:\na. The minimum acreage for a large wind system shall be established based on the setbacks of the turbine(s) and the height of the turbine(s);\nb. All turbines located within the same large wind system property shall be of a similar tower design, including the type, number of blades, and direction of blade rotation;\nc. Large wind systems shall be setback at least one and one-half times the height of the turbine and rotor diameter from the property line. Large wind systems shall also be setback at least one and one-half times the height of the turbine from above ground telephone, electrical lines, and other uninhabitable structures;\nd. Towers shall not be climbable up to 15 feet above ground level.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_1024
,dim_768
,dim_512
anddim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_1024 | dim_768 | dim_512 | dim_256 |
---|---|---|---|---|
cosine_accuracy@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_accuracy@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
cosine_accuracy@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
cosine_accuracy@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
cosine_precision@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_precision@3 | 0.1329 | 0.1329 | 0.1302 | 0.1258 |
cosine_precision@5 | 0.1155 | 0.1155 | 0.1129 | 0.11 |
cosine_precision@10 | 0.0788 | 0.0788 | 0.0782 | 0.0764 |
cosine_recall@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_recall@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
cosine_recall@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
cosine_recall@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
cosine_ndcg@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_ndcg@3 | 0.2318 | 0.2318 | 0.2266 | 0.2191 |
cosine_ndcg@5 | 0.3041 | 0.3041 | 0.2968 | 0.2887 |
cosine_ndcg@10 | 0.3753 | 0.3753 | 0.3706 | 0.3613 |
cosine_mrr@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_mrr@3 | 0.1752 | 0.1752 | 0.171 | 0.1654 |
cosine_mrr@5 | 0.2144 | 0.2144 | 0.2091 | 0.2031 |
cosine_mrr@10 | 0.2457 | 0.2457 | 0.2416 | 0.235 |
cosine_map@100 | 0.2551 | 0.2551 | 0.2512 | 0.2453 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 17,198 training samples
- Columns:
question
andcontext
- Approximate statistics based on the first 1000 samples:
question context type string string details - min: 14 tokens
- mean: 26.6 tokens
- max: 57 tokens
- min: 23 tokens
- mean: 140.8 tokens
- max: 259 tokens
- Samples:
question context Are there any specific guidelines or requirements for the installation of tree supports as outlined in the regulations?
SECTION 32 93 00:
Cast-in-Place 31 25 14 - Erosion and 32 13 13 - Concrete Paving. 32 13 16 - Decorative Concrete. a. Measurement 1) Measured per each Tree planted. b. Payment 1) The work performed and materials and measured as provided under price bid per each for Tree 2) Various caliper inches. The price bid shall include: 1) Furnishing and installing Tree as 2) Preparing excavation pit 3) Topsoil, fertilizer, mulch, and planting mix, 1 = . , 1 = Tree. , 1 = furnished in accordance with this item "Measurement" will be paid for at the unit for:. planted, 1 = . specified, 1 = . by the Drawings, 1 = . supports, 1 = . [Insert Bid Number], 1 = . [Insert, 1 = . 4), 1 = Plant. Number], 1 = Number]. Engineering Project, 1 = Engineering Project
Effective July 1, 2024
32 93 00
PLANTINGS
Page 2 of 24
eee
BER
BPRERRWhat specific information do I need to include in my application to meet the standards for grouted installations?
1.1 SUMMARY:
= . 36, 2 = . 36, 3 = (1) requirements a qualified testing laboratory.. 37, 1 = . 37, 2 = . 37, 3 = Submit a minimum of 3 other similar projects where the proposed grout mix. 38, 1 = . 38, 2 = . 38, 3 = design was used.. 39 40, 1 = . 39 40, 2 = . 39 40, 3 = anticipated volumes of grout to be pumped for each. , 1 = . , 2 = . , 3 = Submit application and reach grouted.. 41, 1 = 4.. 41, 2 = . 41, 3 = Additional requirements for installations of carrier pipe 24-inch and larger:. 42, 1 = . 42, 2 = a.. 42, 3 = Submit work plan describing the carrier pipe installation equipment, materials. 43 44, 1 = . 43 44, 2 = b.. 43 44, 3 = employed. For installations without holding jacks or a restrained spacer, provide buoyant
CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22, 2020 Effective July 1, 2024
[Insert Engineering Project Number] [Insert Bid Number]
eK
BWN
nA
20
21
22
23
24In the event of a quasi judicial hearing, who else besides the site owner(s) should we inform about the decision notification process, and how do we manage their requests for a copy of the decision?
Notice of Decision:
1. Within 10 days after a final decision on an application, the Director shall provide written notification of the decision, unless the applicant was present at the meeting where the decision was made or required by law.
2. If the review involves a quasi-judicial hearing, the Director shall, within 10 days after a final decision on the application, provide a written notification of the decision to the owner(s) of the subject site (unless the applicant was present at the meeting where the decision was made or required by law), and any other person that submitted a written request for a copy of the decision before its effective date. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 8lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 |
---|---|---|---|---|---|---|
0.2974 | 10 | 2.3168 | - | - | - | - |
0.5948 | 20 | 1.2839 | - | - | - | - |
0.8922 | 30 | 0.6758 | - | - | - | - |
0.9814 | 33 | - | 0.3592 | 0.3592 | 0.3556 | 0.3496 |
1.1896 | 40 | 0.4651 | - | - | - | - |
1.4870 | 50 | 0.3707 | - | - | - | - |
1.7844 | 60 | 0.2941 | - | - | - | - |
1.9926 | 67 | - | 0.3732 | 0.3732 | 0.3699 | 0.3601 |
2.0818 | 70 | 0.2651 | - | - | - | - |
2.3792 | 80 | 0.2341 | - | - | - | - |
2.6766 | 90 | 0.2093 | - | - | - | - |
2.9740 | 100 | 0.1812 | 0.3747 | 0.3747 | 0.3718 | 0.3626 |
3.2714 | 110 | 0.1717 | - | - | - | - |
3.5688 | 120 | 0.1496 | - | - | - | - |
3.8662 | 130 | 0.1472 | - | - | - | - |
3.9851 | 134 | - | 0.3742 | 0.3742 | 0.3727 | 0.3628 |
4.1636 | 140 | 0.1304 | - | - | - | - |
4.4610 | 150 | 0.1229 | - | - | - | - |
4.7584 | 160 | 0.1085 | - | - | - | - |
4.9963 | 168 | - | 0.3745 | 0.3745 | 0.3717 | 0.361 |
5.0558 | 170 | 0.1144 | - | - | - | - |
5.3532 | 180 | 0.1088 | - | - | - | - |
5.6506 | 190 | 0.0937 | - | - | - | - |
5.9480 | 200 | 0.1023 | - | - | - | - |
5.9777 | 201 | - | 0.3749 | 0.3749 | 0.3704 | 0.3603 |
6.2454 | 210 | 0.0942 | - | - | - | - |
6.5428 | 220 | 0.0919 | - | - | - | - |
6.8401 | 230 | 0.0939 | - | - | - | - |
6.9888 | 235 | - | 0.3755 | 0.3755 | 0.3705 | 0.3603 |
7.1375 | 240 | 0.0925 | - | - | - | - |
7.4349 | 250 | 0.0928 | - | - | - | - |
7.7323 | 260 | 0.0869 | - | - | - | - |
7.8513 | 264 | - | 0.3753 | 0.3753 | 0.3706 | 0.3613 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.4.1+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sabber/worksphere-regulations-embedding_bge
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.031
- Cosine Accuracy@3 on dim 1024self-reported0.399
- Cosine Accuracy@5 on dim 1024self-reported0.577
- Cosine Accuracy@10 on dim 1024self-reported0.788
- Cosine Precision@1 on dim 1024self-reported0.031
- Cosine Precision@3 on dim 1024self-reported0.133
- Cosine Precision@5 on dim 1024self-reported0.115
- Cosine Precision@10 on dim 1024self-reported0.079
- Cosine Recall@1 on dim 1024self-reported0.031
- Cosine Recall@3 on dim 1024self-reported0.399