metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:17198
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
How should we proceed if the installed valve or its appurtenances do not
conform to the City's criteria, and what steps are involved in remedying
the situation?
sentences:
- >-
1.1 SUMMARY:
2. The valve shall perform as intended with no deformation, leaking or
damage of any kind for the pressure ranges indicated.
3. Before acceptance of the installed valve, provide the City the
opportunity to inspect and operate the valve.
a. The City will assess the ease of operating the ball valves and
corporation stops, where applicable.
4. The Combination Air Valve assembly shall be free from any leaks.
B. Non-Conforming Work
1. Ifaccess and operation of the valve or its appurtenances does not
meet the City's criteria, the Contractor will remedy the situation until
it meets the City's criteria, at the Contractor's expense.
3.8. SYSTEM STARTUP [NOT USED]
3.9 ADJUSTING [NOT USED]
3.10 CLEANING [NOT USED]
3.11 CLOSEOUT ACTIVITIES [NOT USED]
3.12, PROTECTION [NOT USED]
3.13 MAINTENANCE [NOT USED]
3.14 ATTACHMENTS [NOT USED]
- >-
b. Miscellaneous Areas:
layer.. , 1 = . , 2 = 3). , 3 = Take corrective action if an adequate
bond does not exist between the. , 1 = . , 2 = . , 3 = current and
underlying layer to ensure an adequate bond will be achieved. , 1 = . ,
2 = . , 3 = during subsequent placement operations.. , 1 = . , 2 = 4). ,
3 = The untrimmed core height must be in accordance with the
requirements in. , 1 = . , 2 = . , 3 = Table 17.. , 1 = . , 2 = 5). , 3
= If the cores are an acceptable height, trim the cores immediately
after. , 1 = . , 2 = . , 3 = obtaining the cores in accordance with
Tex-207-F.. , 1 = . , 2 = . , 3 = Any core that does not meet the
requirements in Table 17 will be rejected.. , 1 = . , 2 = 6). , 3 =
more. , 1 = . , 2 = . , 3 = The City may request additional cores to be
taken within the area. If. , 1 = . , 2 = 7). , 3 = than 2 cores are
- >-
4. Other Activities:
a. Rental of storage units, rental of storage space for recreational
vehicles (RV) and boats, and the sale of moving related items are
allowed uses.
b. No other land use or business activity within storage units is
allowed.
c. The rental of moving trucks and moving related equipment shall
constitute an Equipment Sales and Rental use.
d. The sale and leasing of recreational vehicles (RVs) and boats shall
constitute an Automotive Sales and Leasing use.
- source_sentence: >-
How do the setback regulations in the R1 District affect the design and
placement of structures on the lot?
sentences:
- >-
B. R11 District Dimensional Standards:
Table 3.2-B: R1 District Dimensional Standards, 1 = Table 3.2-B: R1
District Dimensional Standards. Table 3.2-B: R1 District Dimensional
Standards, 2 = Table 3.2-B: R1 District Dimensional Standards. Table
3.2-B: R1 District Dimensional Standards, 3 = Table 3.2-B: R1 District
Dimensional Standards. Dimensional Standards, 1 = Dimensional Standards.
Dimensional Standards, 2 = Dimensional Standards. Dimensional Standards,
3 = Additional Standards. LOT DIMENSIONS (MINIMUM), 1 = LOT DIMENSIONS
(MINIMUM). LOT DIMENSIONS (MINIMUM), 2 = LOT DIMENSIONS (MINIMUM). LOT
DIMENSIONS (MINIMUM), 3 = LOT DIMENSIONS (MINIMUM). oN, 1 = Lot area.
oN, 2 = 32,000 sq ft. oN, 3 = 3.7.2: Lot and Site Requirements. iam, 1 =
Lot width. iam, 2 = 80 feet. iam, 3 = 3.7.2: Lot and Site Requirements.
fem, 1 = Lot depth 100. fem, 2 = feet. fem, 3 = 3.7.2: Lot and Site
Requirements. SETBACKS
- >-
1. R7 Zoning District:
Self-service laundry facilities shall only be permitted as an accessory
use to multifamily dwellings, and such use shall be located within a
multifamily structure.
- >-
1.3 > REFERENCES:
NY, 1 = A.. NY, 2 = Abbreviations and Acronyms 1. AWG: American wire
gauge 2.. Fw, 1 = . Fw, 2 = PVC: polyvinyl chloride. UN, 1 = Reference
Standards. UN, 2 = Reference Standards. COAINID, 1 = 1.. COAINID, 2 =
Reference standards cited in this Section refer to the current reference
standard published at the time of the latest revision date logged at the
end of this Section unless a date is cited.. , 1 = 2.. , 2 =
specifically Texas Department of Transportation, Standard Specifications
for Construction and Maintenance of Highways, Streets and Bridges
(TxDOT):. , 1 = a.. , 2 = Item 684, Traffic Signal Cables. 3. TxDOT
Departmental Materials Specification:. , 1 = 4.. , 2 = Underwriters
Laboratories, Inc.. , 1 = . , 2 = (UL).. , 1 = 5.. , 2 = International
Municipal Signal Association (IMSA).. , 1 = ADMINISTRATIVE REQUIREMENTS
[NOT USED]. , 2 = ADMINISTRATIVE REQUIREMENTS [NOT USED]. , 1 =
SUBMITTALS. , 2 = SUBMITTALS.
- source_sentence: >-
How do the Dimensional Standards apply to our development project in the
specified zoning districts?
sentences:
- >-
v = Entire Site = Development Impact Area Only:
. . Dimensional Standards, DDC Reference = Subchapter 3: Zoning
Districts. . . Dimensional Standards, New A Construction = Vv. . .
Dimensional Standards, Minor: Tier 1 = 0). . . Dimensional Standards,
Major: Tier 2 = v. Land-Disturbing Activities, DDC Reference = 7.2.
Land-Disturbing Activities, New A Construction = All development, see
Section 7.2. Land-Disturbing Activities, Minor: Tier 1 = All
development, see Section 7.2. Land-Disturbing Activities, Major: Tier 2
= All development, see Section 7.2. Environmentally Sensitive Areas, DDC
Reference = 74. Environmentally Sensitive Areas, New A Construction =
All development, see Section 7.4. Environmentally Sensitive Areas,
Minor: Tier 1 = . Environmentally Sensitive Areas, Major: Tier 2 = .
Drainage, DDC Reference = 74. Drainage, New A Construction = All
development, see Section 7.4. Drainage, Minor: Tier 1 = . Drainage,
Major: Tier 2 = . Water and Wastewater, DDC Reference = 7.6. Water and
Wastewater, New A Construction = All development,
- >-
3. Step 3: Determination of Procedure:
Upon receipt of a complete application for a Certificate of Design
Consistency, the Director must determine the appropriate review
procedure prescribed by sections 2.10.1.D.3.a-d below.
Denton, Texas — Denton Development Code
Print Date: August 30, 2024
136
- >-
4B A. Tests and Inspections:
CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised
October 22, 2020
Effective
July 1, 2024
[Insert Bid Number] [Insert Engineering Project Number]
3.5
REPAIR
33 31 23
COMBINATION AIR VALVE ASSEMBLIES FOR SEWER FORCE MAINS
Page 6 of 7
1. Testing and inspection of Combination Air Valves shall be in
accordance with AWWA C512.
- source_sentence: >-
How do the regulations for Light Industrial (LI) and Heavy Industrial (HI)
districts differ in terms of permitted uses and development standards?
sentences:
- >-
This print version includes the following Code amendments::
Other Nonresidential Districts. , 3 = . , 1 = 3.5.1 GO - General
Office... , 2 = 3.5.1 GO - General Office... , 3 = . , 1 = - LI - Light
Industrial. , 2 = - LI - Light Industrial. , 3 = . , 1 = 3.5.2. , 2 = .
, 3 = . , 1 = 3.5.3.. , 2 = HI - Heavy Industrial. , 3 = . , 1 = 3.5.4.
, 2 = PF - Public Facilities.. , 3 = oa. , 1 = Summary -. , 2 = Summary
-. , 3 = . 3.6, 1 = PD Planned Development District. 3.6, 2 = PD Planned
Development District. 3.6, 3 = . , 1 = 3.6.1 Purpose...
seeesesnsnseeeenens Review Procedure ... esse. , 2 = 3.6.1 Purpose...
seeesesnsnseeeenens Review Procedure ... esse. , 3 = . , 1 = 3.6.2. , 2
= .
- >-
1.1 SUMMARY:
AADUNAPWNK, 1 = . AADUNAPWNK, 2 = . AADUNAPWNK, 3 = ensure the conduit
is clean and free from obstructions.. , 1 = . , 2 = . , 3 = 17) Conduits
shall be placed in an open trench at a minimum 24 inches (612. , 1 = . ,
2 = . , 3 = mm) depth below the curb grade in the sidewalk areas, or 18
inches (450 mm) below the finished street grade in the street area.. PW
CUO, 1 = . PW CUO, 2 = 18). PW CUO, 3 = Conduit placed for concrete
encasement shall be secured and supported in. HP, 1 = . HP, 2 = . HP, 3
= such a manner the alignment will not be disturbed during placement of
the. , 1 = . , 2 = . , 3 = concrete.. CPAIANDNAHBPWNYRK, 1 = .
CPAIANDNAHBPWNYRK, 2 = . CPAIANDNAHBPWNYRK, 3 = Noconcrete shall be
until all conduit ends have been and. , 1 = . ,
- >-
E. Water Control:
1. Surface Water
a. Furnish all materials and equipment and perform all incidental work
required to direct surface water away from the excavation.
- source_sentence: >-
How can I ensure that the curing compound we receive at the job site meets
the required specifications with the manufacturer's original containers
and labels intact?
sentences:
- >-
B. Exemptions:
Unless otherwise provided in this DDC, the following shall be exempt
from the provisions of this Section 7.3: Land-Disturbing Activities:
1. Grading and clearing in emergency situations involving immediate
danger to life and property or substantial fire hazards;
2. Any activity where the total volume of material disturbed, stored,
disposed of or used as fill does not exceed 25 cubic yards and the area
disturbed does not exceed 2,000 square feet, provided it does not
obstruct a watercourse and is not located in a floodplain or other
environmentally sensitive area;
3. Soil-disturbing activities, excluding tree removal, that are
associated with normal agricultural crop operations; or
4. Stockpiling and handling of earth material associated with commercial
quarry and landfill operations licensed under the state.
Denton, Texas — Denton Development Code
Print Date: August 30, 2024
353
- >-
8. Curing:
03 00 00
CONCRETE AND CONCRETE REINFORCING
Page 10 of 18
6) Curing compound to be delivered to the job site in the manufacturer's
original containers only, with original label containing the following:
a) Manufacturer's name
b) Trade name of the material
c) Batch number or symbol with which test samples may be correlated
- >-
2. For Large Wind Energy Systems:
a. The minimum acreage for a large wind system shall be established
based on the setbacks of the turbine(s) and the height of the
turbine(s);
b. All turbines located within the same large wind system property shall
be of a similar tower design, including the type, number of blades, and
direction of blade rotation;
c. Large wind systems shall be setback at least one and one-half times
the height of the turbine and rotor diameter from the property line.
Large wind systems shall also be setback at least one and one-half times
the height of the turbine from above ground telephone, electrical lines,
and other uninhabitable structures;
d. Towers shall not be climbable up to 15 feet above ground level.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@1
- cosine_ndcg@3
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@1
- cosine_mrr@3
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@100
model-index:
- name: worksphere
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.030697674418604652
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3986046511627907
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5774418604651163
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7881395348837209
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.030697674418604652
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13286821705426355
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11548837209302326
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07881395348837208
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.030697674418604652
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3986046511627907
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5774418604651163
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7881395348837209
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.030697674418604652
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.23179382587458858
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.3040553564598666
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.37531956376470604
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.030697674418604652
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.17515503875969318
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.21443410852713862
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.24572388335179296
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2550755013176846
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.030697674418604652
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3986046511627907
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5774418604651163
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7881395348837209
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.030697674418604652
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13286821705426355
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11548837209302326
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07881395348837208
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.030697674418604652
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3986046511627907
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5774418604651163
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7881395348837209
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.030697674418604652
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.23179382587458858
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.3040553564598666
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.37531956376470604
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.030697674418604652
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.17515503875969318
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.21443410852713862
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.24572388335179296
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2550755013176846
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.03
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.39069767441860465
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5644186046511628
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.781860465116279
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.03
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13023255813953488
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11288372093023255
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0781860465116279
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.03
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.39069767441860465
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5644186046511628
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.781860465116279
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.03
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.22663893445598368
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.2968091108509391
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.37060640353852903
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.03
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.17096899224806486
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.20909689922481253
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.2416426725729079
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2512032580492767
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.029534883720930234
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3774418604651163
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5502325581395349
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7644186046511627
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.029534883720930234
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1258139534883721
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11004651162790699
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07644186046511628
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.029534883720930234
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3774418604651163
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5502325581395349
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7644186046511627
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.029534883720930234
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.21910859618189715
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.2887354612410299
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.3613007541197287
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.029534883720930234
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.16538759689922747
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.20312015503876593
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.23504817275747772
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2452995067602724
name: Cosine Map@100
worksphere
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sabber/worksphere-regulations-embedding_bge")
# Run inference
sentences = [
"How can I ensure that the curing compound we receive at the job site meets the required specifications with the manufacturer's original containers and labels intact?",
"8. Curing:\n03 00 00\nCONCRETE AND CONCRETE REINFORCING\nPage 10 of 18\n6) Curing compound to be delivered to the job site in the manufacturer's original containers only, with original label containing the following:\na) Manufacturer's name\nb) Trade name of the material\nc) Batch number or symbol with which test samples may be correlated",
'2. For Large Wind Energy Systems:\na. The minimum acreage for a large wind system shall be established based on the setbacks of the turbine(s) and the height of the turbine(s);\nb. All turbines located within the same large wind system property shall be of a similar tower design, including the type, number of blades, and direction of blade rotation;\nc. Large wind systems shall be setback at least one and one-half times the height of the turbine and rotor diameter from the property line. Large wind systems shall also be setback at least one and one-half times the height of the turbine from above ground telephone, electrical lines, and other uninhabitable structures;\nd. Towers shall not be climbable up to 15 feet above ground level.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_1024
,dim_768
,dim_512
anddim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_1024 | dim_768 | dim_512 | dim_256 |
---|---|---|---|---|
cosine_accuracy@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_accuracy@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
cosine_accuracy@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
cosine_accuracy@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
cosine_precision@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_precision@3 | 0.1329 | 0.1329 | 0.1302 | 0.1258 |
cosine_precision@5 | 0.1155 | 0.1155 | 0.1129 | 0.11 |
cosine_precision@10 | 0.0788 | 0.0788 | 0.0782 | 0.0764 |
cosine_recall@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_recall@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
cosine_recall@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
cosine_recall@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
cosine_ndcg@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_ndcg@3 | 0.2318 | 0.2318 | 0.2266 | 0.2191 |
cosine_ndcg@5 | 0.3041 | 0.3041 | 0.2968 | 0.2887 |
cosine_ndcg@10 | 0.3753 | 0.3753 | 0.3706 | 0.3613 |
cosine_mrr@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
cosine_mrr@3 | 0.1752 | 0.1752 | 0.171 | 0.1654 |
cosine_mrr@5 | 0.2144 | 0.2144 | 0.2091 | 0.2031 |
cosine_mrr@10 | 0.2457 | 0.2457 | 0.2416 | 0.235 |
cosine_map@100 | 0.2551 | 0.2551 | 0.2512 | 0.2453 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 17,198 training samples
- Columns:
question
andcontext
- Approximate statistics based on the first 1000 samples:
question context type string string details - min: 14 tokens
- mean: 26.6 tokens
- max: 57 tokens
- min: 23 tokens
- mean: 140.8 tokens
- max: 259 tokens
- Samples:
question context Are there any specific guidelines or requirements for the installation of tree supports as outlined in the regulations?
SECTION 32 93 00:
Cast-in-Place 31 25 14 - Erosion and 32 13 13 - Concrete Paving. 32 13 16 - Decorative Concrete. a. Measurement 1) Measured per each Tree planted. b. Payment 1) The work performed and materials and measured as provided under price bid per each for Tree 2) Various caliper inches. The price bid shall include: 1) Furnishing and installing Tree as 2) Preparing excavation pit 3) Topsoil, fertilizer, mulch, and planting mix, 1 = . , 1 = Tree. , 1 = furnished in accordance with this item "Measurement" will be paid for at the unit for:. planted, 1 = . specified, 1 = . by the Drawings, 1 = . supports, 1 = . [Insert Bid Number], 1 = . [Insert, 1 = . 4), 1 = Plant. Number], 1 = Number]. Engineering Project, 1 = Engineering Project
Effective July 1, 2024
32 93 00
PLANTINGS
Page 2 of 24
eee
BER
BPRERRWhat specific information do I need to include in my application to meet the standards for grouted installations?
1.1 SUMMARY:
= . 36, 2 = . 36, 3 = (1) requirements a qualified testing laboratory.. 37, 1 = . 37, 2 = . 37, 3 = Submit a minimum of 3 other similar projects where the proposed grout mix. 38, 1 = . 38, 2 = . 38, 3 = design was used.. 39 40, 1 = . 39 40, 2 = . 39 40, 3 = anticipated volumes of grout to be pumped for each. , 1 = . , 2 = . , 3 = Submit application and reach grouted.. 41, 1 = 4.. 41, 2 = . 41, 3 = Additional requirements for installations of carrier pipe 24-inch and larger:. 42, 1 = . 42, 2 = a.. 42, 3 = Submit work plan describing the carrier pipe installation equipment, materials. 43 44, 1 = . 43 44, 2 = b.. 43 44, 3 = employed. For installations without holding jacks or a restrained spacer, provide buoyant
CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22, 2020 Effective July 1, 2024
[Insert Engineering Project Number] [Insert Bid Number]
eK
BWN
nA
20
21
22
23
24In the event of a quasi judicial hearing, who else besides the site owner(s) should we inform about the decision notification process, and how do we manage their requests for a copy of the decision?
Notice of Decision:
1. Within 10 days after a final decision on an application, the Director shall provide written notification of the decision, unless the applicant was present at the meeting where the decision was made or required by law.
2. If the review involves a quasi-judicial hearing, the Director shall, within 10 days after a final decision on the application, provide a written notification of the decision to the owner(s) of the subject site (unless the applicant was present at the meeting where the decision was made or required by law), and any other person that submitted a written request for a copy of the decision before its effective date. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 8lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 |
---|---|---|---|---|---|---|
0.2974 | 10 | 2.3168 | - | - | - | - |
0.5948 | 20 | 1.2839 | - | - | - | - |
0.8922 | 30 | 0.6758 | - | - | - | - |
0.9814 | 33 | - | 0.3592 | 0.3592 | 0.3556 | 0.3496 |
1.1896 | 40 | 0.4651 | - | - | - | - |
1.4870 | 50 | 0.3707 | - | - | - | - |
1.7844 | 60 | 0.2941 | - | - | - | - |
1.9926 | 67 | - | 0.3732 | 0.3732 | 0.3699 | 0.3601 |
2.0818 | 70 | 0.2651 | - | - | - | - |
2.3792 | 80 | 0.2341 | - | - | - | - |
2.6766 | 90 | 0.2093 | - | - | - | - |
2.9740 | 100 | 0.1812 | 0.3747 | 0.3747 | 0.3718 | 0.3626 |
3.2714 | 110 | 0.1717 | - | - | - | - |
3.5688 | 120 | 0.1496 | - | - | - | - |
3.8662 | 130 | 0.1472 | - | - | - | - |
3.9851 | 134 | - | 0.3742 | 0.3742 | 0.3727 | 0.3628 |
4.1636 | 140 | 0.1304 | - | - | - | - |
4.4610 | 150 | 0.1229 | - | - | - | - |
4.7584 | 160 | 0.1085 | - | - | - | - |
4.9963 | 168 | - | 0.3745 | 0.3745 | 0.3717 | 0.361 |
5.0558 | 170 | 0.1144 | - | - | - | - |
5.3532 | 180 | 0.1088 | - | - | - | - |
5.6506 | 190 | 0.0937 | - | - | - | - |
5.9480 | 200 | 0.1023 | - | - | - | - |
5.9777 | 201 | - | 0.3749 | 0.3749 | 0.3704 | 0.3603 |
6.2454 | 210 | 0.0942 | - | - | - | - |
6.5428 | 220 | 0.0919 | - | - | - | - |
6.8401 | 230 | 0.0939 | - | - | - | - |
6.9888 | 235 | - | 0.3755 | 0.3755 | 0.3705 | 0.3603 |
7.1375 | 240 | 0.0925 | - | - | - | - |
7.4349 | 250 | 0.0928 | - | - | - | - |
7.7323 | 260 | 0.0869 | - | - | - | - |
7.8513 | 264 | - | 0.3753 | 0.3753 | 0.3706 | 0.3613 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.4.1+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}