samuellimabraz's picture
End of training
ca8816b verified
metadata
base_model: google-t5/t5-base
datasets:
  - Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
  - rouge
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: t5-base-LoRA-TweetSumm-1724689228
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: Andyrasika/TweetSumm-tuned
          type: Andyrasika/TweetSumm-tuned
        metrics:
          - type: rouge
            value: 0.4651
            name: Rouge1
          - type: f1
            value: 0.8924
            name: F1
          - type: precision
            value: 0.8906
            name: Precision
          - type: recall
            value: 0.8943
            name: Recall

t5-base-LoRA-TweetSumm-1724689228

This model is a fine-tuned version of google-t5/t5-base on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7954
  • Rouge1: 0.4651
  • Rouge2: 0.218
  • Rougel: 0.3904
  • Rougelsum: 0.4291
  • Gen Len: 41.8818
  • F1: 0.8924
  • Precision: 0.8906
  • Recall: 0.8943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
2.3566 1.0 440 1.8523 0.4801 0.2302 0.4078 0.4472 41.6727 0.8942 0.8938 0.8947
1.2968 2.0 880 1.7823 0.447 0.2102 0.3795 0.4136 41.9091 0.8929 0.8925 0.8935
1.7438 3.0 1320 1.7954 0.4651 0.218 0.3904 0.4291 41.8818 0.8924 0.8906 0.8943

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1