|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: 14apr-bert-uncased |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 14apr-bert-uncased |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1141 |
|
- Precision: 0.9797 |
|
- Recall: 0.9796 |
|
- F1: 0.9797 |
|
- Accuracy: 0.9774 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1405 | 1.0 | 2500 | 0.1016 | 0.9731 | 0.9761 | 0.9746 | 0.9721 | |
|
| 0.0994 | 2.0 | 5000 | 0.0939 | 0.9776 | 0.9774 | 0.9775 | 0.9750 | |
|
| 0.0731 | 3.0 | 7500 | 0.0968 | 0.9783 | 0.9790 | 0.9787 | 0.9767 | |
|
| 0.045 | 4.0 | 10000 | 0.1075 | 0.9790 | 0.9798 | 0.9794 | 0.9773 | |
|
| 0.035 | 5.0 | 12500 | 0.1141 | 0.9797 | 0.9796 | 0.9797 | 0.9774 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|