|
--- |
|
tags: |
|
- model_hub_mixin |
|
- pytorch_model_hub_mixin |
|
--- |
|
|
|
# Model Card: MRI Brain Tumor Classification (ResNet-18) |
|
|
|
## Model Details |
|
- **Model Name**: `MRIResnet` |
|
- **Architecture**: ResNet-18-based model for MRI brain tumor classification |
|
- **Dataset**: [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset) |
|
- **Batch Size**: 32 |
|
- **Loss Function**: CrossEntropy Loss |
|
- **Optimizer**: Adam (learning rate = 1e-3) |
|
- **Transfer Learning**: Yes (pretrained ResNet-18 with modified layers) |
|
|
|
## Model Architecture |
|
This model is based on **ResNet-18**, a widely used convolutional neural network, and has been adapted for **MRI-based brain tumor classification**. |
|
|
|
### **Modifications** |
|
- **Input Channel Adaptation**: The first convolutional layer is modified to accept single-channel (grayscale) MRI scans. |
|
- **Classifier Head**: The fully connected (FC) layer is replaced to output 4 classes (assuming 4 tumor categories). |
|
- **Transfer Learning**: |
|
- **Frozen Layers**: All pre-trained weights are frozen except for the modified layers. |
|
- **Trainable Layers**: |
|
- First convolutional layer (`conv1`) |
|
- Fully connected classification layer (`fc`) |
|
|
|
## Implementation |
|
### **Model Definition** |
|
```python |
|
import torch |
|
import torch.nn as nn |
|
from torchvision.models import resnet18 |
|
|
|
class MRIResnet(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self): |
|
super().__init__() |
|
self.base_model = resnet18(weights=True) |
|
self.base_model.conv1 = nn.Conv2d( |
|
1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False |
|
) |
|
self.base_model.fc = nn.Linear(512, 4) |
|
|
|
# Freeze all layers except the modified ones |
|
for param in self.base_model.parameters(): |
|
param.requires_grad = False |
|
|
|
for param in self.base_model.conv1.parameters(): |
|
param.requires_grad = True |
|
for param in self.base_model.fc.parameters(): |
|
param.requires_grad = True |
|
|
|
def forward(self, x): |
|
return self.base_model(x) |
|
``` |
|
|
|
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: |