shane062's picture
End of training
8355ac3 verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-base-finetuned-500
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 108.10810810810811

whisper-base-finetuned-500

This model is a fine-tuned version of openai/whisper-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer Ortho: 100.0
  • Wer: 108.1081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0 33.3333 100 nan 100.0 108.1081
0.0 66.6667 200 nan 100.0 108.1081
0.0 100.0 300 nan 100.0 108.1081
0.0 133.3333 400 nan 100.0 108.1081
0.0 166.6667 500 nan 100.0 108.1081

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1