shane062's picture
End of training
8355ac3 verified
---
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-base-finetuned-500
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 108.10810810810811
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-base-finetuned-500
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Wer Ortho: 100.0
- Wer: 108.1081
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:--------:|:----:|:---------------:|:---------:|:--------:|
| 0.0 | 33.3333 | 100 | nan | 100.0 | 108.1081 |
| 0.0 | 66.6667 | 200 | nan | 100.0 | 108.1081 |
| 0.0 | 100.0 | 300 | nan | 100.0 | 108.1081 |
| 0.0 | 133.3333 | 400 | nan | 100.0 | 108.1081 |
| 0.0 | 166.6667 | 500 | nan | 100.0 | 108.1081 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1