metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-medium-300v3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 43.24324324324324
whisper-medium-300v3
This model was trained from scratch on the audiofolder dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 30
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.0296 | 20.0 | 60 | 0.5458 | 59.4595 | 56.7568 |
0.0001 | 40.0 | 120 | 0.5378 | 43.2432 | 43.2432 |
0.0000 | 60.0 | 180 | 0.5364 | 43.2432 | 43.2432 |
0.0000 | 80.0 | 240 | 0.5390 | 43.2432 | 43.2432 |
0.0000 | 100.0 | 240 | 0.5389 | 43.2432 | 43.2432 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1