|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-medium-300v3 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 43.24324324324324 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-medium-300v3 |
|
|
|
This model was trained from scratch on the audiofolder dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_steps: 30 |
|
- training_steps: 300 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| |
|
| 0.0296 | 20.0 | 60 | 0.5458 | 59.4595 | 56.7568 | |
|
| 0.0001 | 40.0 | 120 | 0.5378 | 43.2432 | 43.2432 | |
|
| 0.0000 | 60.0 | 180 | 0.5364 | 43.2432 | 43.2432 | |
|
| 0.0000 | 80.0 | 240 | 0.5390 | 43.2432 | 43.2432 | |
|
| 0.0000 | 100.0 | 240 | 0.5389 | 43.2432 | 43.2432 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|