leonardlin's picture
Upload folder using huggingface_hub
f97ad62 verified
|
raw
history blame
4.52 kB
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- generated_from_trainer
datasets:
- shisa-ai/s1K-1.1-translated-sharegpt
- shisa-ai/gair_limo-translated-sharegpt
model-index:
- name: outputs/ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
# train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
# User Liger
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
chat_template: llama3
datasets:
- path: shisa-ai/s1K-1.1-translated-sharegpt
# type: sharegpt deprecated
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
- path: shisa-ai/gair_limo-translated-sharegpt
# type: sharegpt deprecated
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
shuffle_merged_datasets: false
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# marginal difference
neftune_noise_alpha: 5
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 5
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 1e-4
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# outputs/ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the shisa-ai/s1K-1.1-translated-sharegpt and the shisa-ai/gair_limo-translated-sharegpt datasets.
It achieves the following results on the evaluation set:
- Loss: 0.6817
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0922 | 0.0244 | 1 | 0.8761 |
| 0.9325 | 0.5122 | 21 | 0.7089 |
| 0.7914 | 1.0244 | 42 | 0.6543 |
| 0.7889 | 1.5366 | 63 | 0.6405 |
| 0.731 | 2.0488 | 84 | 0.6421 |
| 0.7322 | 2.5610 | 105 | 0.6433 |
| 0.6002 | 3.0732 | 126 | 0.6641 |
| 0.5797 | 3.5854 | 147 | 0.6603 |
| 0.5329 | 4.0976 | 168 | 0.6848 |
| 0.4481 | 4.6098 | 189 | 0.6817 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0