|
--- |
|
tags: |
|
- GUI agents |
|
- vision-language-action model |
|
- computer use |
|
--- |
|
[Github](https://github.com/showlab/ShowUI/tree/main) | [arXiv](https://arxiv.org/abs/2411.17465) | [HF Paper](https://huggingface.co/papers/2411.17465) | [Spaces](https://huggingface.co/spaces/showlab/ShowUI) | [Datasets](https://huggingface.co/datasets/showlab/ShowUI-desktop-8K) | [Quick Start](https://huggingface.co/showlab/ShowUI-2B) |
|
<img src="examples/showui.png" alt="ShowUI" width="640"> |
|
|
|
ShowUI is a lightweight (2B) vision-language-action model designed for GUI agents. |
|
|
|
## 🤗 Try our HF Space Demo |
|
https://huggingface.co/spaces/showlab/ShowUI |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64440be5af034cdfd69ca3a7/8-W-6xWN32Fsxed0vzBMK.png) |
|
|
|
## ⭐ Quick Start |
|
|
|
1. Load model |
|
```python |
|
import ast |
|
import torch |
|
from PIL import Image, ImageDraw |
|
from qwen_vl_utils import process_vision_info |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
|
|
def draw_point(image_input, point=None, radius=5): |
|
if isinstance(image_input, str): |
|
image = Image.open(BytesIO(requests.get(image_input).content)) if image_input.startswith('http') else Image.open(image_input) |
|
else: |
|
image = image_input |
|
|
|
if point: |
|
x, y = point[0] * image.width, point[1] * image.height |
|
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') |
|
display(image) |
|
return |
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"showlab/ShowUI-2B", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
|
|
min_pixels = 256*28*28 |
|
max_pixels = 1344*28*28 |
|
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) |
|
``` |
|
|
|
2. **UI Grounding** |
|
```python |
|
img_url = 'examples/web_dbd7514b-9ca3-40cd-b09a-990f7b955da1.png' |
|
query = "Nahant" |
|
|
|
|
|
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": _SYSTEM}, |
|
{"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, |
|
{"type": "text", "text": query} |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True, |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
click_xy = ast.literal_eval(output_text) |
|
# [0.73, 0.21] |
|
|
|
draw_point(img_url, click_xy, 10) |
|
``` |
|
|
|
This will visualize the grounding results like (where the red points are [x,y]) |
|
|
|
![download](https://github.com/user-attachments/assets/8fe2783d-05b6-44e6-a26c-8718d02b56cb) |
|
|
|
3. **UI Navigation** |
|
- Set up system prompt. |
|
```python |
|
_NAV_SYSTEM = """You are an assistant trained to navigate the {_APP} screen. |
|
Given a task instruction, a screen observation, and an action history sequence, |
|
output the next action and wait for the next observation. |
|
Here is the action space: |
|
{_ACTION_SPACE} |
|
""" |
|
|
|
_NAV_FORMAT = """ |
|
Format the action as a dictionary with the following keys: |
|
{'action': 'ACTION_TYPE', 'value': 'element', 'position': [x,y]} |
|
|
|
If value or position is not applicable, set it as `None`. |
|
Position might be [[x1,y1], [x2,y2]] if the action requires a start and end position. |
|
Position represents the relative coordinates on the screenshot and should be scaled to a range of 0-1. |
|
""" |
|
|
|
action_map = { |
|
'web': """ |
|
1. `CLICK`: Click on an element, value is not applicable and the position [x,y] is required. |
|
2. `INPUT`: Type a string into an element, value is a string to type and the position [x,y] is required. |
|
3. `SELECT`: Select a value for an element, value is not applicable and the position [x,y] is required. |
|
4. `HOVER`: Hover on an element, value is not applicable and the position [x,y] is required. |
|
5. `ANSWER`: Answer the question, value is the answer and the position is not applicable. |
|
6. `ENTER`: Enter operation, value and position are not applicable. |
|
7. `SCROLL`: Scroll the screen, value is the direction to scroll and the position is not applicable. |
|
8. `SELECT_TEXT`: Select some text content, value is not applicable and position [[x1,y1], [x2,y2]] is the start and end position of the select operation. |
|
9. `COPY`: Copy the text, value is the text to copy and the position is not applicable. |
|
""", |
|
|
|
'phone': """ |
|
1. `INPUT`: Type a string into an element, value is not applicable and the position [x,y] is required. |
|
2. `SWIPE`: Swipe the screen, value is not applicable and the position [[x1,y1], [x2,y2]] is the start and end position of the swipe operation. |
|
3. `TAP`: Tap on an element, value is not applicable and the position [x,y] is required. |
|
4. `ANSWER`: Answer the question, value is the status (e.g., 'task complete') and the position is not applicable. |
|
5. `ENTER`: Enter operation, value and position are not applicable. |
|
""" |
|
} |
|
|
|
_NAV_USER = """{system} |
|
Task: {task} |
|
Observation: <|image_1|> |
|
Action History: {action_history} |
|
What is the next action? |
|
""" |
|
``` |
|
|
|
```python |
|
img_url = 'examples/chrome.png' |
|
split='web' |
|
system_prompt = _NAV_SYSTEM.format(_APP=split, _ACTION_SPACE=action_map[split]) |
|
query = "Search the weather for the New York city." |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": system_prompt}, |
|
{"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, |
|
{"type": "text", "text": query} |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True, |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
print(output_text) |
|
# {'action': 'CLICK', 'value': None, 'position': [0.49, 0.42]}, |
|
# {'action': 'INPUT', 'value': 'weather for New York city', 'position': [0.49, 0.42]}, |
|
# {'action': 'ENTER', 'value': None, 'position': None} |
|
``` |
|
|
|
![download](https://github.com/user-attachments/assets/624097ea-06f2-4c8f-83f6-b6b9ee439c0c) |
|
|
|
|
|
If you find our work helpful, please consider citing our paper. |
|
|
|
``` |
|
@misc{lin2024showui, |
|
title={ShowUI: One Vision-Language-Action Model for GUI Visual Agent}, |
|
author={Kevin Qinghong Lin and Linjie Li and Difei Gao and Zhengyuan Yang and Shiwei Wu and Zechen Bai and Weixian Lei and Lijuan Wang and Mike Zheng Shou}, |
|
year={2024}, |
|
eprint={2411.17465}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2411.17465}, |
|
} |
|
``` |