Aita / app.py
Artificial-superintelligence's picture
Update app.py
3369106 verified
import streamlit as st
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_audioclips
import whisper
from transformers import MBartForConditionalGeneration, MBartTokenizer
from gtts import gTTS
import torch
import tempfile
import os
import numpy as np
from pydub import AudioSegment
import librosa
import warnings
warnings.filterwarnings('ignore')
# Initialize models and configs
@st.cache_resource
def load_models():
whisper_model = whisper.load_model("large")
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
return whisper_model, tokenizer, model
# Tamil language configuration
TAMIL_CONFIG = {
'code': 'ta',
'whisper_code': 'tamil',
'mbart_code': 'ta_IN',
'gtts_code': 'ta',
'voice_speed': 1.1, # Adjust speed for better sync
'sample_rate': 22050
}
# Streamlit UI setup
st.set_page_config(page_title="Tamil Video Dubbing AI", page_icon="πŸŽ₯", layout="wide")
def create_custom_style():
st.markdown("""
<style>
.stApp {
background-color: #f5f5f5;
}
.main {
padding: 2rem;
}
.stButton>button {
background-color: #FF4B4B;
color: white;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
create_custom_style()
def translate_text(text, tokenizer, model):
"""Enhanced translation specifically for Tamil using MBart"""
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
translated_tokens = model.generate(
**inputs,
forced_bos_token_id=tokenizer.lang_code_to_id["ta_IN"],
num_beams=5,
length_penalty=1.0,
max_length=512,
min_length=0,
do_sample=True,
temperature=0.7
)
return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
def process_audio_for_sync(audio_path, target_speed=1.0):
"""Process audio for better synchronization"""
audio = AudioSegment.from_file(audio_path)
# Adjust speed without changing pitch
if target_speed != 1.0:
sound_with_altered_frame_rate = audio._spawn(audio.raw_data, overrides={
"frame_rate": int(audio.frame_rate * target_speed)
})
audio = sound_with_altered_frame_rate.set_frame_rate(audio.frame_rate)
return audio
def main():
st.title("πŸŽ₯ Tamil Video Dubbing AI")
st.markdown("### Advanced Video Translation and Dubbing System")
# Load models
try:
with st.spinner("Loading AI models..."):
whisper_model, tokenizer, translation_model = load_models()
st.success("Models loaded successfully! πŸš€")
except Exception as e:
st.error(f"Error loading models: {e}")
return
# File uploader with progress
video_file = st.file_uploader("Upload your video file", type=["mp4", "mov", "avi"])
if video_file:
# Video preview
st.video(video_file)
# Advanced settings
with st.expander("Advanced Settings"):
voice_speed = st.slider("Voice Speed", 0.5, 1.5, TAMIL_CONFIG['voice_speed'], 0.1)
quality_level = st.select_slider(
"Translation Quality",
options=["Draft", "Standard", "High Quality"],
value="Standard"
)
if st.button("Start Tamil Dubbing", key="start_dubbing"):
try:
with st.spinner("Processing your video..."):
# Save uploaded video
temp_video_path = tempfile.mktemp(suffix='.mp4')
with open(temp_video_path, 'wb') as f:
f.write(video_file.read())
# Process steps with progress bar
progress_bar = st.progress(0)
status_text = st.empty()
# Extract audio
status_text.text("Extracting audio...")
video = VideoFileClip(temp_video_path)
audio_path = tempfile.mktemp(suffix=".wav")
video.audio.write_audiofile(audio_path, fps=TAMIL_CONFIG['sample_rate'])
progress_bar.progress(20)
# Transcribe
status_text.text("Transcribing audio...")
result = whisper_model.transcribe(audio_path, language=TAMIL_CONFIG['whisper_code'])
original_text = result["text"]
progress_bar.progress(40)
# Translate
status_text.text("Translating to Tamil...")
translated_text = translate_text(original_text, tokenizer, translation_model)
progress_bar.progress(60)
# Generate Tamil speech
status_text.text("Generating Tamil speech...")
tts = gTTS(text=translated_text, lang=TAMIL_CONFIG['gtts_code'])
translated_audio_path = tempfile.mktemp(suffix=".mp3")
tts.save(translated_audio_path)
progress_bar.progress(80)
# Final video creation
status_text.text("Creating final video...")
dubbed_audio = process_audio_for_sync(translated_audio_path, voice_speed)
final_audio_path = tempfile.mktemp(suffix=".wav")
dubbed_audio.export(final_audio_path, format="wav")
# Combine video with new audio
final_video_path = tempfile.mktemp(suffix=".mp4")
final_audio = AudioFileClip(final_audio_path)
final_video = video.set_audio(final_audio)
final_video.write_videofile(final_video_path, codec='libx264', audio_codec='aac')
progress_bar.progress(100)
# Display results
st.success("Video dubbed successfully! πŸŽ‰")
st.video(final_video_path)
# Download options
col1, col2 = st.columns(2)
with col1:
with open(final_video_path, "rb") as f:
st.download_button(
"Download Dubbed Video",
f,
file_name="tamil_dubbed_video.mp4",
mime="video/mp4"
)
with col2:
st.download_button(
"Download Tamil Script",
translated_text,
file_name="tamil_script.txt",
mime="text/plain"
)
# Clean up
for path in [temp_video_path, audio_path, translated_audio_path,
final_audio_path, final_video_path]:
if os.path.exists(path):
os.remove(path)
except Exception as e:
st.error(f"An error occurred: {e}")
st.info("Please try again with a different video or check your internet connection.")
if __name__ == "__main__":
main()